WHAT ARE THE CAUSES OF CERVICAL SPINAL DEGENERATION?

A systematic critical literature review

by

Svend Lings, Jonas Winkel Holm and Charlotte Leboeuf-Yde

Arbejdsmiljøforskningsfonden udbyder udredningsprojekter i form af referencedokumenter om erhvervssygdomme. I juli 2007 indkaldtes ansøgninger om støtte til udredninger inden for fire temaer, hvoraf det ene var "Sammenhænge mellem påvirkninger på arbejdet og degenerative sygdomme i halshvirvelsøjlen, herunder gigtiske forandringer og diskusprolaps." Denne rapport omhandler dette tema og er udarbejdet med støtte fra fonden.

Contents

Recommendations	4
Dansk resumé	5
English abstract	9
Introduction	14
Background	14
Method	19
Results	22
Discussion	
Conclusions	36
References	
Appendix 1	43
Appendix 2	
Appendix 3	
Evidence tables	

Recommendations

On the basis of the results of this systematic critical literature review, we want to emphasize the following statements.

The type and number of studies failed to reflect the needs of occupational health practitioners and authorities. It is highly desirable that research funds should be allocated to relevant areas for studies using suitable scientific methods.

At the present time, the significance of degenerative changes for human suffering is uncertain. The primary question is whether such changes are to be considered a "condition" or merely normal adaptive phenomena that might even play a positive role in strengthening the spinal structures. In order to investigate the possible link between specific types of CDSC and symptoms, it would be necessary to perform population-based large scale studies including substantial subgroups of different ages. In such studies, modern visualization techniques (MRI-scan) should be utilized, and pain and disability should be appraised over longer periods as spinal pain is a recurrent disorder, not a yes/no condition. If an association between degenerative changes and symptoms is found, epidemiologic studies will be needed to demonstrate the relation between various work exposures and degenerative changes. Such studies should be more advanced than hitherto. Thus, it would be relevant to study the strength of associations and dose-response. It would also be necessary to take into account the genetic effect, which probably is substantial. This could be done through family studies, by the use of twins and by including genetic markers as possible modifiers of the results.

However, initially, we recommend a systematic critical literature review to be conducted in which, specifically, the link between symptoms, their frequency and severity should be studied in relation to the various types of "degeneration" (including Modic changes) in the entire cervical musculoskeletal system.

DANSK RESUMÉ

HVAD ER ÅRSAGERNE TIL DEGENERATIVE FORANDRINGER I HALSHVIRVELSØJLEN?

En systematisk kritisk litteraturoversigt

Svend Lings, Jonas Winkel Holm og Charlotte Leboeuf-Yde

Anbefalinger

Arten og antallet af undersøgelser dækker ikke det arbejdsmedicinske og administrative behov. Det ville derfor være ønskeligt at ressourcer blev tilført relevante områder med henblik på metodologisk tilfredsstillende forskning.

På nuværende tidspunkt er betydningen af degenerative forandringer ("slidgigt") for smerter og andre symptomer uklar. Hovedspørgsmålet er hvorvidt sådanne forandringer skal betragtes som "lidelser" eller bare som normale tilpasningsfænomener der endda kan tænkes at spille en positiv rolle ved at styrke de spinale strukturer. Undersøgelse af den mulige sammenhæng mellem specifikke former for degenerative forandringer og symptomer vil kræve store populationsstudier omfattende passende undergrupper af forskellig alder. Moderne billeddiagnostiske teknikker (MR-skanning) skulle benyttes, og symptomer og funktionshæmning skulle observeres over lange tidsrum da nakkesmerter er en tilbagevendende lidelse, ikke en enten/eller tilstand. Hvis en sammenhæng mellem degenerative forandringer og symptomer påvises, vil det være nødvendigt at gennemføre epidemiologiske undersøgelser af forholdet mellem forskellige arbejdsmæssige eksponeringer og forandringerne. Sådanne undersøgelser må være mere avancerede end de hidtidige. Det ville således være relevant at studere styrken af sammenhænge og dosis-respons. Det ville også være nødvendigt at se nærmere på genetiske forhold da deres betydning formentlig er væsentlig. Det kunne ske gennem tvillingeundersøgelser

Primært anbefales det dog at der gennemføres en systematisk kritisk litteraturgennemgang specifikt med henblik på undersøgelse af forholdet mellem symptomer, deres hyppighed og sværhedsgrad, og de forskellige former for "degenerative" forandringer (herunder Modic-forandringer) i hele halsens muskuloskeletale system.

Introduktion

Nakkesmerter er næsten lige så almindelige i befolkningen som lændesmerter. Der er imidlertid stor uklarhed om sammenhængen mellem såkaldte degenerative forandringer i hvirvelsøjlen og smerter.

Et andet spørgsmål er hvorvidt disse degenerative forandringer kan forårsages, accelereres eller forværres af bestemte fysiske aktiviteter, kropsstillinger eller andre faktorer. Hovedformålet med denne litteraturgennemgang var at undersøge sidstnævnte aspekter, men vi forsøger også i en vis udstrækning at kaste lys over årsager i bredere betydning.

Vi fandt utilstrækkeligt grundlag for at afgøre hvorvidt ydre faktorer øger degenerative forandringer i halshvirvelsøjlen. De eneste faktorer der viste sig at have afgørende betydning, var alder og arveanlæg.

Baggrund

Degenerative forandringer i halshvirvelsøjlen ("slidgigt") omfatter afsmalning af båndskiven (diskus) mellem hvirvellegemer, knoglenydannelser udgående fra hvirvellegemerne (osteofytter, spondylose), forkalkning af hvirvlernes endeplader (sklerosering), defekter i båndskiven (rifter), frembuling af båndskiven (protrusion), eventuelt udposning af materiale (diskusprolaps), forskydning af hvirvellegemerne i forhold til hinanden, "Modic-forandringer" (et fænomen som kun ses ved MRskanninger) samt slidgigt i hvirvlernes små facetled (facetledsartrose, uncovertebral artrose, spondylartrose). Disse fænomener er hverken særegne for mennesker eller af nyere dato. De findes også hos andre arter og er meget almindelige i præhistorisk menneskeligt materiale.

Man har længe vidst at degenerative forandringer i hvirvelsøjlen er produkter af livslange vævsprocesser. De begynder i diskus allerede i barndommen og tiltager med alderen, men både graden og arten varierer individuelt. På trods af betegnelsen "degenerative" synes disse forandringer at være tæt knyttede til processer som tilpasning og opheling. Udviklingen af forandringerne er dog ufuldstændigt udforsket.

Metode

En række computerbaserede litteratursøgninger blev gennemført med assistance fra forskningsbibliotekar for at identificere relevant litteratur. Det krævedes at artiklerne repræsenterede originalt arbejde, var tilgængelige i fuld længde og var publiceret efter en videnskabelig, fagkritisk bedømmelse (peer-review). Endvidere skulle de degenerative forandringer være objektivt verificeret enten ved hjælp af billeddiagnostisk, anatomiske undersøgelser eller operationsjournaler. I artiklernes analyser skulle der være taget hensyn til alder. Alle de inkluderede arbejder blev systematisk gennemgået og kvalitetsvurderet ud fra en checkliste udarbejdet til formålet.

Resultater

Ved litteratursøgningerne identificeredes godt 12.000 muligvis relevante publikationer. Efter nærmere vurdering blev dog kun i alt 62 artikler fundet egnet til at indgå i den kritiske litteraturgennemgang.

Studiernes kvalitet var generelt lav. Kun fire opnåede maksimumpoint (10/10), andre 14 fik 8 eller 9. Atten fik 5 eller mindre. Kun i 30 tilfælde havde man sørget for "blinding" så den der vurderede billederne ikke vidste hvad den undersøgte havde været udsat for. Dosis-respons var kun oplyst i fire tilfælde.

Tretten handlede om almene befolkningsgrupper eller patientgrupper, 19 om forskellige erhvervsgrupper (heraf syv alene om piloter), seks om personer der bar tunge byrder på hovedet, syv om forskellige sportsgrene, tre om patienter der havde ekstreme eller abnorme hovedbevægelser pga. sygdom, seks om dyreeksperimenter, to om arvelighedsforhold og endelig to om rygningens indflydelse på degenerative forandringer.

I fire tilfælde havde man forsøgt at belyse forekomsten af degenerative forandringer i den almene befolkning. Én undersøgelse viste en hyppighed på 13 % hos mænd i alderen 20-29 år, 5 % hos kvinder i samme aldersgruppe. I 40-49 års alderen var hyppigheden steget til 66 % hos mænd og 46 % hos kvinder. Ved 60-69 år var tallene 98 % respektive 91 %. En anden undersøgelse viste en hyppighed på 3 % i 15-års alderen, 100 % ved de 65.

De fleste undersøgelser viste en klar sammenhæng mellem alder og degenerative forandringer, og somme tider var alderen den eneste faktor der spillede en rolle. En tvillingeundersøgelse af høj kvalitet viste stærk arvelighed som kunne forklare omkring 70 % af variationen.

Nitten artikler handlede om hvorvidt bestemte erhvervsgrupper havde højere forekomst end andre. Kvalitetsscoren varierede fra 1/10 til 10/10. Tolv af disse artikler viste en eller anden forskel mens syv ikke gjorde. De to bedste undersøgelser pegede i hver sin retning. Det samme gjorde tre af acceptabel kvalitet idet en ikke viste nogen forskelle mens en anden viste sammenhæng med militær faldskærmstjeneste og en med arbejde hvor hovedet holdes bagudbøjet. Ikke mindre end syv handlede om professionelle piloter, men tegnede ikke noget klart billede. Seks som helhed dårlige artikler beskæftigede sig med personer der bar tunge byrder på hovedet. Den bedste viste at 89 % af disse havde degenerative forandringer i halshvirvelsøjlen i modsætning til 23 % af en kontrolgruppe, og der var dosis-responssammenhæng. Syv handlede om betydningen af sport, nemlig to om rugby (amerikansk fodbold), to om fodbold, en om amatørdykning og to om forskellige sportsgrene. En mulig sammenhæng blev antydet mellem degenerative forandringer og amerikansk fodbold, boksning, fodbold og dykning, men kvaliteten var generelt lav.

Blandt de tre artikler om ekstreme og/eller abnorme hovedbevægelser ved forskellige sygdomme viste den bedste (spasmodisk torticollis) at der primært var slidgigtforandringer i den side af halshvirvelsøjlen som hovedet bevægedes imod.

To undersøgelser handlede om rygning. Den bedste viste ingen sammenhæng.

Seks dyreeksperimenter udført på mus, rotter og kaniner var generelt af høj kvalitet. De viste fremskreden diskusdegeneration hos mus med bindevævsdefekt, øget forekomst hos mus med arvelig kyfose ("pukkel"), samt hyppigere og mere udtalte forandringer hos forsøgsdyr som gennem måneder i lange perioder havde udført hyppigt gentagne halsbevægelser pga. elektrisk stimulation af halsmuskulaturen. Endelig fandtes degenerative forandringer i halshvirvelsøjlen hos forsøgsdyr nogle måneder efter at deres nakkemuskler og –sener var blevet bortopereret.

Overordnet kan man sige at det største problem i den fundne litteratur er at forskellige fysiske eksponeringer er tæt sammenvævede i de undersøgte sammenhænge. I langt de fleste tilfælde blev disse eksponeringer ikke nærmere beskrevet, ud over angivelse af stillingsbetegnelsen. Desuden blev dosisresponsspørgsmål ikke studeret. Der indgår kun få kvinder, og det er umuligt at sige om sammenhængen mellem fysiske faktorer og degenerative forandringer i halshvirvelsøjlen var kønsafhængig.

Konklusioner

Mængden og især den generelle kvalitet af den identificerede litteratur var forholdsvis beskeden, og der tegnes ikke et klart billede af relationen mellem erhvervsmæssige fysiske faktorer og degenerative forandringer i halshvirvelsøjlen. På den baggrund må vi konkludere:

- Der er utilstrækkelig evidens for en årsagsmæssig sammenhæng mellem degenerative forandringer i halshvirvelsøjlen og ekstreme hovedstillinger, gentagne bevægelser, vibrationseksponering, dykning, sport og alle undersøgte erhverv (bortset fra bæring af tunge byrder på hovedet).
- Der er utilstrækkelig evidens for dosis-responssammenhænge.
- Der er begrænset evidens for en årsagsmæssig sammenhæng mellem degenerative forandringer i halshvirvelsøjlen og kraftpåvirkning af halshvirvelsøjlen udefra, herunder bæring af tunge byrder på hovedet.

ABSTRACT

WHAT ARE THE CAUSES OF CERVICAL SPINAL DEGENERATION?

A systematic critical literature review

Svend Lings, Jonas Winkel Holm and Charlotte Leboeuf-Yde

Introduction

Neck pain is almost as common in the general population as low back pain. Today, however, there is great uncertainty regarding the relation between spinal degenerative changes and symptoms. Another question is whether the degenerative processes may be caused, accelerated or worsened by certain physical activities, postures or other factors. According to this literature review, there is insufficient evidence to determine whether any external exposures increase cervical spinal degeneration. The only factors we found to be of obvious significance were age and genetic disposition.

Background

Visualized cervical degenerative spinal changes (abbreviated CDSC) include reduced disc height, osteophytes, sclerosis of the vertebral endplates, anular tear, disc intensity alterations, disc bulging, disc herniation (prolapsed disc), spondylolisthesis, Modic changes, bony changes of the vertebral bodies and facet joint arthrosis. These phenomena are neither specific to humans nor of newer date. They are found in other species as well, and are very common in prehistoric human materials

For a long time it has been known that degenerative changes in the spine are products of lifelong tissue processes. Degenerative changes in the disc start already in late childhood and increase with age. However, the severity and specifics of the degenerative changes differ between individuals. In spite of the term "degenerative" the changes seem closely interlinked with processes of adaptive remodelling and healing.

The aetiologies are poorly explored. The main purpose of this review is to thoroughly evaluate the available epidemiological literature concerning potential physical risk factors of cumulative character, but we also try to shed light on the causes in a broader sense being, however, far from exhaustive.

Design

Systematic critical literature review.

Method

A series of librarian-assisted searches were performed in order to identify relevant literature. In addition, hand searches were made. Studies should represent an original work available in full-text and published in a journal with a peer-reviewed process. Degenerative changes could be objectively verified by imaging techniques, by pathoanatomical assessment or by collection of valid medical information regarding prior operation for CDSC. The analyses that had been performed in the articles should employ a certain minimum of controlling for age. All abstracts were screened independently by two persons. Abstracts that both considered relevant were secured as complete article texts. All article texts were screened for suitability. Each accepted article was then subjected to a systematic critical appraisal based on a checklist by two blinded authors. We selected some methodological items that we considered important when judging the credibility of research results: 1) sampling bias, 2) outcome variables, 3) potential predictor variables, 4) information bias, and 5) data analysis. Each aspect was then graded from 0 to 2. The maximum number of points that articles could achieve with our checklist system was 10. The reviewed articles were sorted into groups and the items transferred to evidence tables.

Results

The librarian-assisted literature searches resulted in 6481 abstracts, and a further 5711 titles from supplementary searches. A few, obtained through other sources, were included. The abstracts were screened by two of the authors. The 5711 titles contained at lot of doubles and were only screened by one. In all, 413 full articles were procured. No systematic critical literature review from the past twenty years was found. The full text articles were screened by two authors. Excluded were 121 because they actually failed to fulfil the inclusion criteria or were irrelevant to the subject. Finally, 62 studies were included in the critical systematic literature review.

Quality of studies

The quality of studies was generally poor. Only four of the reviewed articles obtained maximum scores (10/10), and a further 14 obtained 8 or 9 scores. 18 of the studies obtained only 5 scores or less. Only 30 studies had taken the precaution of separating the knowledge of exposure from the determination of the outcome measure (blinding), and dose-response was only reported in four.

Subjects

Thirteen dealt with general or clinical populations, 19 treated various occupational groups, seven studies were devoted to pilots, six reported on people who carried heavy burdens on their head, seven on various sports, three dealt with abnormal movements because of illness, six reported on animal experiments, two on genetics, and two on smoking.

General prevalence

In four studies it was attempted to establish the prevalence of degenerative changes in the general population. In a random sample drawn from a general practitioner's register, a prevalence of 13 % was found among males in the age group 20-29 years and 5 % among females in the same age group. By 40-49 years, the prevalence had risen to 66 % among males and 46 % among females. In 60-69 year olds the figures were 98 % and 91 % respectively. In another study an overall prevalence of 42 % was found in men and 37 % in women. In 15 year olds the prevalence was 3 %, by 65 years 100 %. Most studies showed a clear association between age and degenerative changes. In general, age was found to be positively associated with CDSC; indeed, sometimes it turned out to be the only variable having an influence in an almost linear fashion. A twin study of very high quality showed a strong heritability for degeneration with estimates around 70 %.

Occupation

There were 19 studies on various occupational groups. The quality scores ranged from 1/10 to 10/10. They all dealt with the question of whether specific occupations resulted in more degeneration than others with, presumably, less physical exposure. Twelve studies showed a difference of some kind while seven did not. The two occupational studies of highest methodological quality pointed in opposite directions. Of the three studies of acceptable quality one found no clear association with occupation while one showed association to parachuting and another to work with the neck extended. A professional group that has attracted interest is pilots, on the assumption that they are exposed to strong gravitational forces. Seven studies were identified. They failed to produce a coherent picture. Six studies dealt with groups of people who carried heavy loads on their heads. Their quality scores were generally low. The study of best quality concluded that 89 % of carriers had degenerative changes vs. 23 % of the controls and a dose-response was apparent.

Sports

Seven studies on sports were identified: two on rugby players, two on soccer players, two on various sports and one on amateur diving. The methodological quality was mainly poor. A possible association with rugby, boxing, soccer and diving was indicated.

Abnormal movements

Excessive and awkward movements were investigated in three studies, one on patients with spasmodic torticollis, one on patients with athetoid movements, and one on habitual wheel-chair users. The one dealing with patients who suffered from spasmodic torticollis concluded that osteoarthritis developed predominantly on the side of the direction into which the head turned.

Smoking

Two studies dealt with smoking. In the study of highest quality, no association with smoking was found.

Experimental animal studies

Six studies reported experiments on mice, rabbits or rats. The quality score was generally high. They showed advanced disc degeneration in transgenic mice with a collagen defect, more degenerative changes at the levels C5-Th3 in mice with heritable kyphosis, and degenerative changes were shown to be more frequent and more pronounced in animals stimulated in trapezius cyclically through a long time. In experiments on mice, rats and rabbits, posterior cervical paravertebral muscles were detached, ligaments resected and the animals killed at intervals. Histological changes were seen two months postoperatively and radiological degenerative changes in all operated animals several months after operation.

General problems in the literature

The major problem in the existing literature is that different physical exposures are closely interwoven in the investigated settings. In only a minority of the studies efforts were made to describe the physical exposures more specifically than solely by job title. On top of this, the reported data did not make it possible to calculate risk estimates with confidence intervals as our intention was from the beginning. In general, the literature also failed to address the issue of dose-response, and it was impossible to conclude whether the relation between physical exposures and CDSC was influenced by gender.

Associations between degenerative changes and symptoms?

Whether associations exist between the varieties of degeneration and symptoms is not clear. The results of eight studies found on this subject went in different directions.

Conclusions

There is insufficient evidence of a causal association between CDSC and prolonged tangential or rotational strain (i.e., "extreme" head postures), repetitive movements of the cervical spine without external impulse loading, vibration exposure, diving, sports, and all occupations dealt with in the existing literature, head carrying being the only exception.

There is limited evidence for an association between CDSC and repetitive movements of the cervical spine with external impulse loading, and for an association between CDSC and prolonged heavy axial cervical strain.

INTRODUCTION

This document was prepared on the initiative and with support of The Danish Working Environment Research Fund. It is a systematic critical scientific review with the aim to provide an evidence-based reference resource primarily summarizing the existing knowledge of possible causal associations between occupational physical factors and degenerative changes in the cervical spine.

Neck pain is almost as common in the general population as low back pain [1], and it is a frequently encountered symptom in clinical practice. Many patients consulting for localized neck pain with or without radiating pain into the arms are likely to be submitted to some form of imaging examination. A very small minority of such examinations will reveal serious pathologies, but in most cases, still, the clinician is left with a picture of some spinal structures that do not look quite right. Degenerative changes, whether of the posterior spinal elements, the vertebral bodies or of the intervertebral discs, would commonly be found. It is tempting to attach special importance to these changes in an attempt to explain the patient's symptoms.

Today, however, there is great uncertainty regarding the relation between degenerative changes and symptoms. Some therapists think that particularly degenerated discs, narrow spinal canals and osteophytes in the vicinity of nerve roots are possible causes of neck pain and radiating pain. But accumulating evidence seems to indicate that this is not the case. Obviously, it would be relevant to appraise the literature in order to establish if there is or is not a link between degenerative changes of the cervical spinal and neck problems.

Another question that arises is whether the degenerative processes may be caused, accelerated or worsened by certain physical activities, postures or other factors. The main purpose of this report is to study these latter aspects, but we also try to shed light on the causes in a broader sense being, however, far from exhaustive.

Literature references are inserted in angular brackets continuously (not alphabetically).

BACKGROUND

Visualized cervical degenerative spinal changes (abbreviated CDSC) include reduced disc height, osteophytes, sclerosis of the vertebral endplates, anular tear, disc intensity alterations, disc bulging, disc

herniation (prolapsed disc), spondylolisthesis, Modic changes, bony changes of the vertebral bodies and facet joint osteoarthrosis.

These phenomena are neither specific to humans nor of newer date. They are found in other species as well, are very common in prehistoric human materials [2-4], and excavations from the Middle Ages have shown that CDSC were approximately as prevalent as today [5].

The aetiologies are poorly explored. The main purpose of this review is to thoroughly evaluate the available epidemiological literature concerning potential physical risk factors of cumulative character of CDSC, but as mentioned before, we also try to shed light on the causes in a broader sense, not being exhaustive. Thus literature concerning animal experiments, pathoanatomical and in vitro studies is included.

The cervical spine does not carry the same burden as the lumbar spine, but is designed for higher mobility in exchange of less stability [6;7]. It is a complex system with seven vertebrae, discs between them, 37 synovial joints, ligaments and muscles. The two top vertebrae, atlas and axis, are highly specialised for large mobility. The second most mobile areas are between the fifth and sixth vertebra (C5/C6) followed by C4/C5 and C6/C7.

The disc is an avascular tissue with cells (chondrocytes) in a structurally intricate matrix. It consists of three distinct components, the circumferential anulus fibrosus, the central gelatinous nucleus pulposus, and the two cartilaginous endplates adhering to the nearby vertebral bodies.

For a long time it has been known that degenerative changes in the spine are products of lifelong tissue processes [8]. In spite of the term "degenerative" (according to Webster's dictionary "falling below a normal or desirable level"), disintegrating or degrading processes seem closely interlinked with processes of adaptive remodelling and healing involving cell proliferation [9;10].

Even though the picture in some instances seems complicated, the degenerative changes can to some degree be conceived as three subsequent phases in a common "degenerative cascade" involving 1) a "dysfunction phase" characterised by incipient degenerative changes, still without biomechanical impact, 2) an instability (or hypermobility) phase of segmental instability due to progressing degeneration and 3) a restabilisation phase characterised by adaptive remodelling to counteract[11] the hypermobility [12;13].

Degenerative changes in the disc start already in late childhood with progressive desiccation and decompression of the gelatinous nucleus, primarily due to declining content of the water-binding proteoglycans [8;14-16]. Later in the degenerative process, the nucleus becomes increasingly fibrotic and disintegrated, often divided in several lumps by intranuclear clefts and separated from the cartilaginous endplate by softer material [17;18]. Also in the cartilaginous endplate, degenerative changes commence early in life, including erosions and cracking and later calcification [19;20].

In the anulus fibrosus degenerative changes have also been shown from late childhood. This includes, apart from some desiccation, disorganisation of the annular microarchitecture which leave the anulus increasingly stiffer and weaker [21;22] with progression to development of fissures or tears of different types [23;24].

It is a relative new knowledge that degeneration of lumbar discs with disrupted cartilaginous endplates often is accompanied by oedema in the surrounding bone marrow of the adjoining vertebral bodies, with formation of fibrovascular tissue between the thickened bone trabeculae. These changes, radiologically exclusively detectable with MRI, are called "Modic changes" [25;26]. They have also been described in the cervical spine, especially at the C5/C6 level [27]. Histologically, they constitute an inflammatory "discovertebritis" which probably represent a mechanical and/or chemical tissue reaction to the degenerated endplate and disc. Usually, two types of Modic changes are encountered, "Type 1" and "Type 2", the latter probably being regenerative. Another common proliferative change is the subchondral osteosclerosis of the vertebral endplates [28].

"Osteophytes" gradually proliferate from the vertebral margins. They can eventually fuse with osteophytes from neighbouring segments to form bony bridges. This makes the spine more rigid.

The disc degeneration is regularly accompanied by osteoarthrosis in the adjacent synovial joints, "spondylarthrosis" [29]. Advanced bony proliferative changes, posteriorly located osteophytes and gross facet joint deterioration can lead to secondary stenosis of the intervertebral foramina, the nerve root canals or the spinal canal. The subsequent mechanical or chemical irritation of spinal nerve roots can give rise to brachial radiculopathy, or, when the medulla is affected, to myelopathy [30-33]. Also disc herniation ("disc prolapse") can produce these clinical syndromes.

Terminology

As mentioned above, no commonly accepted definitions of the different degenerative changes exist.

The bony changes in the vertebral bodies are often mentioned under the collective names *spondylosis, spondylosis deformans* or sometimes *osteochondrosis* [34]. Conceptual vagueness is regularly met in the literature. The term spondylosis is used synonymously for both disc degeneration and the formation of osteophytes only.

Osteoarthrosis in the facet joints is normally distinguished from the concepts of disc and vertebral body degeneration with the terms *spondylarthrosis*, *facet joint arthrosis*, *uncovertebral arthrosis*, *spondylarthritis* or *facet joint arthritis*.

Diagnostic imaging

The common imaging techniques in detecting degenerative spinal changes are conventional radiography (X-ray imaging), computed tomography (CT) and magnetic resonance imaging (MRI).

X-ray visualises soft tissues poorly and cannot display the disc tissue as such, but secondary phenomena of the disc degradation can be seen, primarily disc space narrowing, and sometimes also disc calcification and gas accumulation (vacuum phenomenon) in the disc.

With MRI, and in minor degree also with CT, soft tissue changes are substantially better visualised, and MRI is at present the method of choice in visualising discs, ligaments and the other spinal soft-tissues. More detailed information can also be visualised with MRI including disc bulging, disc protrusion, disc herniation, fissures and clefts in the nucleus and "high intensity zones" in the anulus representing tears. Also finer disc tissue details can be displayed, such as scarring and calcification and defects in the endplates. However, histological features, i.e. tears, rim lesions and prolapse of nucleus material, may be poorly recognised [35]. The Modic changes of the vertebral bodies are described earlier.

Bony changes of the vertebrae, including *s*pondylosis and facet joint arthrosis are visible with all three main imaging modalities. However, CT-scan is (followed by MRI) superior in demonstrating osseous structures. In the facet joints a typical osteoarthrosis is revealed for example as subchondral sclerosis and cysts, osteophytosis, joint space narrowing, and sometimes also as intra-articular vacuum, increased joint fluid or ligamentous thickening [36].

Natural course of cervical degenerative spinal changes

CDSC increases with age. However, the severity and specifics of the degenerative changes differ between individuals [37;38].

Degenerative spinal changes are normally expected to assume a slowly progressing, chronic course. However, at least as far as disc degeneration is concerned, the picture appears more complicated, since recent observations indicate that annular fissures and even disc height narrowing can "recover" spontaneously [39], just as it is known for disc protrusions.

Relation of cervical degenerative spinal changes to clinical syndromes

Neck pain is very common in the general population [40;41], and, if once emerged, it will recur or continue in at least half of the cases [42]. In a large population-based questionnaire study, 4.6 % of the adult population described severe neck pain significantly restricting their activities of daily living [43]. But all in all, the efforts of correlating CDSC with local neck pain are still controversial. In a recent review, which critically appraised results of the literature on assessment strategies of neck pain, one of the conclusions was that "there is non-conclusive evidence that common changes on cervical MRI-scan are strongly correlated with neck symptoms" [44]. However, this statement was based on an absence of evidence rather than evidence of no association, as such.

Analytical epidemiology, hypotheses of pathology

The aetiologies of CDSC are poorly explored, but disc degeneration in the lumbar spine is somewhat better investigated. Evidence exists that a number of external and internal risk factors may contribute to lumbar disc degeneration. Among these, different aspects of mechanical strain have traditionally been regarded as important and have been supposed to act by a slowly detrimental "wear-and-tear" effect of repetitive microtrauma [45]. In the occupational field, many epidemiologic studies have suggested that heavy material handling [46;47] and perhaps also vehicular whole body vibration [48] are occupational risk factors for lumbar disc degeneration and disc herniation, but the overall picture is still not quite consistent [49-51].

A number of risk factors for lumbar disc degeneration related to life style and constitution have been suspected to contribute including age, smoking habits, gender, body height, weight and body mass index [52-54]. However, recent twin studies have provided crucial results displaying that genetic factors play a dominant role, probably accounting for as much as ³/₄ of the variance of disc degeneration among adults [55]. Thus, in a recent twin study, occupational lifting history only explained 1 % of the variance of disc narrowing [56]. This leaves a more modest role for environmental factors, including occupational or athletic physical factors. Whether a similar etiological spectrum applies to the cervical spine is not clear at the present time.

METHOD

The literature search

A series of librarian-assisted searches were performed in order to identify relevant literature (JWH, for detailed information, see Appendix 1). In addition, a hand search was made using the reference lists of relevant articles and the participants' own databases.

Inclusion and exclusion criteria

In order to assess the retrieved papers for suitability, the following criteria were applied:

- 1. Studies should represent an original work available in full-text and published in a journal with a peer-reviewed process. There were no time limitations to original articles.
- 2. Also PhD and doctoral theses were acceptable.
- 3. Letters to the editor, conference proceedings, and editorials were thus excluded but could serve as background literature.
- 4. Information in the article should concentrate on the relation between physical factors of prolonged nature and should objectively describe cervical degenerative changes. Studies only treating the effect of single traumas to the neck were excluded.
- Cervical degenerative changes could be objectively verified by imaging techniques (X-ray, MRI, CT) or by pathoanatomical assessment or by collection of valid medical information regarding prior operation for CDSC (in practice, cervical disc herniation).
- The analyses that had been performed in the articles should employ a certain minimum of controlling for age (by matching, age restriction, or statistical control), or at least be reported for different age-groups.
- The design of the study had to be cross-sectional, case-control, longitudinal, experimental observational study with a well-defined base population, pathoanatomical or histological. Randomised controlled studies or interventional studies were also accepted. Case studies and case-series were excluded.
- The following languages were accepted: English, German, French, Danish, Swedish and Norwegian.
- 9. Systematic critical literature reviews published within the last twenty years would be included.

Screening of abstracts

All abstracts were screened independently by two persons (CLY and SL). Abstracts that both considered relevant were secured as complete article texts. When only one of the readers suggested an abstract, a discussion with the second author was undertaken and a joint decision made, usually in the positive direction.

Screening of articles

All article texts were screened for suitability (CLY and SL), and some of them were left out. Each accepted article was then subjected to a systematic critical appraisal based on a checklist (see below) by two blinded authors (mainly CLY and SL). The results of their reviews were noted on the checklists to be compared. In case of disagreement, the article was read once more followed by a consensus discussion. A random check was then undertaken by the first author (JWH).

Literature review

Checklists

Although checklists exist to assess methodological quality of research articles (such as the one recommended by The Cochrane Collaboration for clinical trials), there is none suitable specifically to assess the quality of epidemiologic articles on causality. For this reason, we designed such a checklist (Appendix 2). It consisted of three main components which were used 1) to describe the study, 2) to assess its quality, and 3) to provide the main results. This checklist could be somewhat modified to suit particular study types.

1. Describing the studies

All reviewed studies were briefly described to make it possible to identify the article (author, year, country), and to appreciate the main concept of the study (design, type of study population, and exposure in relation to degenerative changes and dose-response e.g. in terms of load and years of exposure). In addition, all imaging/histological definitions were categorized and noted in the checklist.

2. Assessing the quality

Different methods can be used to judge the quality of research articles. Reports can be given points according to a predefined set of criteria. These points can be added up to a final score with each score carrying equal weight, or the scores can be weighted, with the more important aspects of the study

resulting in higher marks. The final score can be reported for the reader to take into consideration. A cut-off point can be defined, and studies below this point disregarded in the interpretation phase of the study, or certain minimal criteria can be selected and decided to be necessary before admitting an article for further assessment. In research circles, there is, however, no consensus on which method to use [57].

For the quality aspect, we selected some methodological items that we considered important when judging the credibility of research results. The five main aspects were 1) sampling bias, 2) outcome variables, 3) potential predictor variables, 4) information bias, and 5) data analysis. Each of these aspects was provided with a number of items that might be relevant to judge the quality of that particular aspect. Aided by these items, each aspect was then graded from 0 to 2. For details, please refer to the evidence tables. Some minor adaptations were made to the checklists used for genetic studies, general populations, and animal studies, to suit the differences in study designs.

The maximum number of points that articles could achieve with our checklist system was 10. We did not select a cut-off point for quality, but we took special notice of whether the assessment of the outcome variable was done without bias. Usually this meant whether the persons who determined the type and level of degeneration was blinded as to the factors examined that might have an influence on the degenerative findings. In the case of genetic studies, the method of ascertainment of twins and the determination of zygosity status were considered especially important. An overview of the quality scores for each article is found in Table 1.

Another important variable on the checklist was of course the definition of cervical spine degeneration. This item was specifically noted for each article.

3. Evidence tables

The reviewed articles were sorted into groups according to the subject. Some of the items on the checklists, including the final quality score, were transferred to evidence tables. These tables are included at the end of the report. Blinded assessment of degenerative changes (or of zygosity status in the case of twin studies) was noted specifically in the table. If information was available on an association between degeneration and age or sex, these findings were entered into the tables. Data interpretation was then undertaken on the basis of these combined informations.

4. Deduction of information

The results of the best studies were first taken into consideration on basis of the evidence tables. Thereafter it was investigated whether the other articles obtained similar findings or not. In the case of contradictory results, explanations were sought in the study material, study design and/or general quality of the articles.

RESULTS

The literature search

The librarian-assisted literature searches resulted in 6481 abstracts, and a further 5711 titles from supplementary searches in the three common library resources *Svemed+*, *bibliotek.dk* and *Libris*. A few articles obtained through other sources (authors' own registers and references in other articles) were included.

The screening of abstracts

The 6481 abstracts, some of which were doubles, were screened by two of the authors. The 5711 titles contained at lot of doubles and were only screened by one. In all, 413 full articles were procured. No systematic critical literature review from the past twenty years was found.

Screening of articles

The full text articles were screened by two authors. Of these, 121 were excluded because they actually failed to fulfil the inclusion criteria or were irrelevant to the subject. A number of interesting articles were left to be used as background reading, and some of them were used in the discussion section. Finally, 62 studies were included in the systematic critical literature review.

Quality of studies

The quality of studies was generally poor. Only four of the reviewed articles obtained maximum scores (10/10), and a further 14 obtained 8 or 9 scores. Eighteen of the studies obtained only 5 scores or less. Even more worrying, only 30 studies had taken the precaution of separating the knowledge of exposure from the determination of the outcome measure (blinding).

The most commonly missed quality item, according to our quality table, was sampling bias followed by information bias (typically lack of blinding when reading films) and dataanalysis, see Table 1.

In general the study samples were small and the matching either not described or insufficient to assure comparability between groups.

The method section often included information on a number of degenerative changes on which data were collected, but not reported upon.

Dose-response was only reported in four of the studies [58-61].

 Table 1. Quality score

Good = 2, acceptable = 1, not acceptable = 0. Maximal obtainable score = 10 (in two articles of a special kind only 8)

Author	Sampling	Outcome	Potential	Informa-	Data	Total
Year	bias	variables	predictor	tion bias	analy-	quality
Country			variables		sis	score
An 1994 USA	2	2	1	0	1	6/10
Aydog 2004 Turkey	2	1	2	1	1	7/10
Baogan 2000 China	1	2	2	1	2	8/10
Bartsch 2001 Germany	0	2	2	2	0	6/10
Beck 1951 Germany	0	0	1	0	0	1/10
Berge 1999 France	0	1	2	0	1	4/10
Bremner 1968 Jamaica	2	2	2	2	2	10/10
Chawda 2000 UK	2	2	2	2	0	8/10
Ebara 1989 Japan	0	2	2	0	0	4/10
Echarri 2002 Congo	0	2	2	0	0	4/10
Echarri 2005 Congo	0	2	1	0	0	3/10
Ernst 2005 Belgium	0	2	NA	2	1	5/8
Gore 2006 USA	1	2	2	2	2	9/10
Hartwig 2003 Germany	0	2	2	0	1	5/10
Hämäläinen 1993 Finland	2	1	2	2	1	8/10
Hendriksen 1999 Holland	2	1	2	2	1	8/10
Hult 1954 Sweden	1	2	1	0	2	6/10
Hult 1954 Sweden	1	2	2	0	1	6/10
Humphreys 1998 USA	0	2	2	0	0	4/10

Jäger 1997 Sierra Leone121228/10Jensen 1996 Denmark122NA16/8Joosab 1994 Zimbabwe010001/10Jung 1975 Germany021003/10Kartal 2004 Turkey022206/10Katevuo 1985 Finland122206/10Katevuo 1985 Finland121105/10Kellgren 1952 UK11105/105/10Kimura 1996 Japan22013/10Kojima 1997 Japan002013/10Kopacz 1999 USA22NA206/8I andau 2006 Israel02218/108/10Lawrence 1961 UK122218/10Lee 2001 Hong Kong22127/1010/10Letho 1994 Finland02216/10Mason 1984 UK212210/106/10Mason 1984 UK212218/10Mason 1998 Japan12206/101Mason 1998 Japan12218/10Mason 1998 Japan12206/10Muthrig 1998 Sierra Leone022206/10<	Irvine 1965 UK	2	2	2	2	2	10/10
Joosab 1994 Zimbabwe 0 1 0 0 0 1/10 Jung 1975 Germany 0 2 1 0 0 3/10 Kartal 2004 Turkey 0 2 2 2 0 6/10 Kartal 2004 Turkey 0 2 2 2 0 6/10 Katevuo 1985 Finland 1 2 2 0 6/10 Kellgren 1952 UK 1 1 1 0 5/10 Kimura 1996 Japan 2 2 0 1 3/10 Kojima 1997 Japan 0 0 2 0 1 3/10 Kopacz 1999 USA 2 2 NA 2 0 6/8 Landau 2006 Israel 0 2 2 1 8/10 Lawrence 1961 UK 1 2 2 1 8/10 Lawrence 1969 UK and Rhondda 0 2 1 2 7/10 Lee 2001 Hong Kong 2 2	Jäger 1997 Sierra Leone	1	2	1	2	2	8/10
Jung 1975 Germany021003/10Kartal 2004 Turkey022206/10Katevuo 1985 Finland122206/10Kellgren 1952 UK121206/10Kellgren 1958 UK21105/10Kimura 1996 Japan22013/10Kojima 1997 Japan002013/10Kopacz 1999 USA22NA206/8Landau 2006 Israel022206/10Lawrence 1961 UK122218/10Lawrence 1969 UK and Rhondda0212210/10Letto 1994 Finland02218/10Mabub 2006 Bangladesh212218/10Mason 1984 UK212218/10Matsumoto 1998 Japan122206/10Mason 1996 USA21229/101Mutif 1939 Sierra Leone022206/10Muyamoto 1991 Japan22207/101Mustajoki 1978 Finland012227/10Mustajoki 1978 Finland012227/10Mustajoki 1978 Finland0122 <t< td=""><td>Jensen 1996 Denmark</td><td>1</td><td>2</td><td>2</td><td>NA</td><td>1</td><td>6/8</td></t<>	Jensen 1996 Denmark	1	2	2	NA	1	6/8
Kartal 2004 Turkey 0 2 2 2 0 6/10 Katevuo 1985 Finland 1 2 2 0 7/10 Kellgren 1952 UK 1 2 1 2 0 6/10 Kellgren 1958 UK 2 1 1 0 5/10 Kimura 1996 Japan 2 2 0 1 7/10 Kojima 1997 Japan 0 0 2 0 1 3/10 Kopacz 1999 USA 2 2 NA 2 0 6/8 Landau 2006 Israel 0 2 2 1 8/10 Lawrence 1961 UK 1 2 2 2 10/10 Lee 2001 Hong Kong 2 2 2 10/10 2 7/10 Lee 2001 Hong Kong 2 2 2 10/10 2 7/10 Mabub 2006 Bangladesh 2 1 2 0 6/10 Mason 1984 UK 2 1 2 2 9/10 Matsumoto 1998 Japan 1 2 2	Joosab 1994 Zimbabwe	0	1	0	0	0	1/10
Katevuo 1985 Finland 1 2 2 0 7/10 Kellgren 1952 UK 1 2 1 2 0 6/10 Kellgren 1958 UK 2 1 1 1 0 5/10 Kimura 1996 Japan 2 2 2 0 1 7/10 Kojima 1997 Japan 0 0 2 0 1 3/10 Kopacz 1999 USA 2 2 NA 2 0 6/8 Landau 2006 Israel 0 2 2 1 8/10 Lawrence 1961 UK 1 2 2 2 1/10 Lee 2001 Hong Kong 2 2 2 1/10 1/10 Lehto 1994 Finland 0 2 2 2 1/10 Mabub 2006 Bangladesh 2 2 2 0 6/10 Mason 1984 UK 2 1 2 2 9/10 Mehring 1998 Sierra Leone 0 2 2 2 0 6/10 Miyamoto 1991 Japan 2 2 2	Jung 1975 Germany	0	2	1	0	0	3/10
Kellgren 1952 UK 1 2 1 2 0 6/10 Kellgren 1958 UK 2 1 1 1 0 5/10 Kimura 1996 Japan 2 2 2 0 1 7/10 Kojima 1997 Japan 0 0 2 0 1 3/10 Kopacz 1999 USA 2 2 NA 2 0 6/8 Landau 2006 Israel 0 2 2 1 8/10 Lawrence 1961 UK 1 2 2 1 8/10 Lawrence 1969 UK and Rhondda 0 2 1 2 7/10 Lee 2001 Hong Kong 2 2 2 1 2 7/10 Lee 2001 Hong Kong 2 2 2 1 2 7/10 Mabub 2006 Bangladesh 2 2 2 1 8/10 Mason 1984 UK 2 1 2 2 9/10 Matsumoto 1998 Japan 1 2 2 0 6/10 Miyamoto 1999 Japan 2 2	Kartal 2004 Turkey	0	2	2	2	0	6/10
Kellgren 1958 UK 2 1 1 0 5/10 Kimura 1996 Japan 2 2 2 0 1 7/10 Kojima 1997 Japan 0 0 2 0 1 3/10 Kopacz 1999 USA 2 2 NA 2 0 6/8 Landau 2006 Israel 0 2 2 2 1 8/10 Lawrence 1961 UK 1 2 2 2 1 8/10 Lawrence 1969 UK and Rhondda 0 2 1 2 2 1/10 Lee 2001 Hong Kong 2 2 2 1 2 7/10 Lehto 1994 Finland 0 2 2 1 2 7/10 Mabub 2006 Bangladesh 2 1 2 0 6/10 Mason 1984 UK 2 1 2 2 1 8/10 Matsumoto 1998 Japan 1 2 2 2 9/10 Mehring 1998 Sierra Leone 0 2 2 0 6/10 Mundt 1993 USA	Katevuo 1985 Finland	1	2	2	2	0	7/10
Kimura 1996 Japan 2 2 2 0 1 7/10 Kojima 1997 Japan 0 0 2 0 1 3/10 Kopacz 1999 USA 2 2 NA 2 0 6/8 Landau 2006 Israel 0 2 2 NA 2 0 6/10 Lawrence 1961 UK 1 2 2 2 1 8/10 Lawrence 1969 UK and Rhondda 0 2 1 2 2 1/10 Lee 2001 Hong Kong 2 2 2 1 2 7/10 Mahbub 2006 Bangladesh 2 2 2 1 2 7/10 Mason 1984 UK 2 1 2 0 6/10 Mason 1996 USA 2 1 2 2 9/10 Mehring 1998 Sierra Leone 0 2 2 0 6/10 Miyamoto 1991 Japan 2 2 0 7/10 1 Mundt 199	Kellgren 1952 UK	1	2	1	2	0	6/10
Kojima 1997 Japan002013/10Kopacz 1999 USA22NA206/8Landau 2006 Israel022206/10Lawrence 1961 UK122218/10Lawrence 1969 UK and Rhondda021227/10Lee 2001 Hong Kong2222127/10Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh22206/10Mason 1984 UK212016/10Mason 1984 UK21229/10Matsumoto 1998 Japan122206/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 2001 Sweden22206/10Rellan 1969 India022219/10	Kellgren 1958 UK	2	1	1	1	0	5/10
Kopacz 1999 USA22NA206/8Landau 2006 Israel022206/10Lawrence 1961 UK122218/10Lawrence 1969 UK and Rhondda021227/10Lee 2001 Hong Kong222218/10Lee 2001 Hong Kong22227/10Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh22206/10Mason 1984 UK212016/10Mason 1996 USA212229/10Mehring 1998 Sierra Leone022206/10Murdt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Rellan 1969 India022219/10	Kimura 1996 Japan	2	2	2	0	1	7/10
Landau 2006 Israel022206/10Lawrence 1961 UK12218/10Lawrence 1969 UK and Rhondda021227/10Lee 2001 Hong Kong2222210/10Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh222006/10Mason 1984 UK212016/10Mason 1984 UK212218/10Matsumoto 1998 Japan122206/10Miyamoto 1991 Japan222028/10Mundt 1993 USA122207/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 2001 Sweden22206/10Rellan 1969 India02204/10	Kojima 1997 Japan	0	0	2	0	1	3/10
Lawrence 1961 UK122218/10Lawrence 1969 UK and Rhondda021227/10Lee 2001 Hong Kong22222127/10Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh222006/10Mason 1984 UK212016/10Mason 1996 USA212218/10Matsumoto 1998 Japan122206/10Miyamoto 1991 Japan222028/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Rellan 1969 India02206/10	Kopacz 1999 USA	2	2	NA	2	0	6/8
Lawrence 1969 UK and Rhondda021227/10Lee 2001 Hong Kong22222110/10Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh222006/10Mason 1984 UK212016/10Mason 1996 USA212229/10Matsumoto 1998 Japan122206/10Mehring 1998 Sierra Leone022206/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Rellan 1969 India022206/10	Landau 2006 Israel	0	2	2	2	0	6/10
Lee 2001 Hong Kong22222210/10Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh222006/10Mason 1984 UK212016/10Mason 1996 USA212218/10Matsumoto 1998 Japan122206/10Mehring 1998 Sierra Leone022206/10Muyamoto 1991 Japan22206/10Mustajoki 1978 Finland012207/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022219/10Rellan 1969 India02206/10	Lawrence 1961 UK	1	2	2	2	1	8/10
Lehto 1994 Finland022127/10Mahbub 2006 Bangladesh222006/10Mason 1984 UK212016/10Mason 1996 USA212218/10Matsumoto 1998 Japan12229/10Mehring 1998 Sierra Leone022206/10Muyamoto 1991 Japan22207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Rellan 1969 India022206/10	Lawrence 1969 UK and Rhondda	0	2	1	2	2	7/10
Mahbub 2006 Bangladesh222006/10Mason 1984 UK212016/10Mason 1996 USA212218/10Masumoto 1998 Japan12229/10Mehring 1998 Sierra Leone022206/10Miyamoto 1991 Japan22207/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden222219/10Rellan 1969 India022204/10	Lee 2001 Hong Kong	2	2	2	2	2	10/10
Mason 1984 UK212016/10Mason 1996 USA212218/10Matsumoto 1998 Japan122229/10Mehring 1998 Sierra Leone022206/10Miyamoto 1991 Japan222028/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022219/10Rellan 1969 India022204/10	Lehto 1994 Finland	0	2	2	1	2	7/10
Mason 1996 USA212218/10Matsumoto 1998 Japan12229/10Mehring 1998 Sierra Leone022206/10Miyamoto 1991 Japan222028/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022219/10Rellan 1969 India022004/10	Mahbub 2006 Bangladesh	2	2	2	0	0	6/10
Matsumoto 1998 Japan122229/10Mehring 1998 Sierra Leone022206/10Miyamoto 1991 Japan222028/10Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022219/10Rellan 1969 India022004/10	Mason 1984 UK	2	1	2	0	1	6/10
Mehring 1998 Sierra Leone022206/10Miyamoto 1991 Japan222028/10Mundt 1993 USA12207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022219/10Rellan 1969 India02204/10	Mason 1996 USA	2	1	2	2	1	8/10
Miyamoto 1991 Japan222028/10Mundt 1993 USA12207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Petrén-Mallmin 2001 Sweden22204/10Rellan 1969 India022004/10	Matsumoto 1998 Japan	1	2	2	2	2	9/10
Mundt 1993 USA122207/10Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Petrén-Mallmin 2001 Sweden22219/10Rellan 1969 India022004/10	Mehring 1998 Sierra Leone	0	2	2	2	0	6/10
Mustajoki 1978 Finland012227/10Obisesan 1999 Nigeria112015/10Palmer 1984 USA000000/10Petrén-Mallmin 1999 Sweden022206/10Petrén-Mallmin 2001 Sweden22219/10Rellan 1969 India022004/10	Miyamoto 1991 Japan	2	2	2	0	2	8/10
Obisesan 1999 Nigeria 1 1 2 0 1 5/10 Palmer 1984 USA 0 0 0 0 0 0 0/10 Petrén-Mallmin 1999 Sweden 0 2 2 2 0 6/10 Petrén-Mallmin 2001 Sweden 2 2 2 1 9/10 Rellan 1969 India 0 2 2 0 0 4/10	Mundt 1993 USA	1	2	2	2	0	7/10
Palmer 1984 USA 0 0 0 0 0 0 0 0/10 Petrén-Mallmin 1999 Sweden 0 2 2 2 0 6/10 Petrén-Mallmin 2001 Sweden 2 2 2 1 9/10 Rellan 1969 India 0 2 2 0 0 4/10	Mustajoki 1978 Finland	0	1	2	2	2	7/10
Petrén-Mallmin 1999 Sweden 0 2 2 2 0 6/10 Petrén-Mallmin 2001 Sweden 2 2 2 1 9/10 Rellan 1969 India 0 2 2 0 0 4/10	Obisesan 1999 Nigeria	1	1	2	0	1	5/10
Petrén-Mallmin 2001 Sweden 2 2 2 2 1 9/10 Rellan 1969 India 0 2 2 0 0 4/10	Palmer 1984 USA	0	0	0	0	0	0/10
Rellan 1969 India 0 2 2 0 0 4/10	Petrén-Mallmin 1999 Sweden	0	2	2	2	0	6/10
	Petrén-Mallmin 2001 Sweden	2	2	2	2	1	9/10
Reul 1995 Germany 0 2 2 1 7/10	Rellan 1969 India	0	2	2	0	0	4/10
	Reul 1995 Germany	0	2	2	2	1	7/10

Sambrook 1999 UK and Australia	1	2	2	2	2	9/10
Scher 1990 South Africa	0	2	2	0	0	4/10
Schröter 1959 Germany	0	1	2	0	0	3/10
Siivola 2002 Finland	2	2	2	2	0	8/10
Sortland 1982 Norway	0	1	2	0	2	5/10
Takamiya 2006 Japan	0	2	1	2	2	7/10
Tsirikos 2001 Greece	0	1	2	0	0	3/10
Wada 1992 Japan	2	2	2	0	1	7/10
Wang 2006 China	2	2	2	2	2	10/10
Zapletal 1997 Holland	2	2	2	0	2	8/10
Zejda 2003 Poland	1	1	2	0	2	6/10
Ålund 1994 Sweden	0	2	2	2	0	6/10

The literature review

Of the 62 articles included into the systematic critical review, thirteen (Evidence Table 1) dealt with general or clinical populations. Nineteen (Table 2) treated various occupational groups, seven (Table 3) studies were devoted to pilots, six (Table 4) reported on people who carried heavy burdens on their head, seven (Table 5) to various sports, three (Table 6) with abnormal movements because of illness, six (Table 7) reported on animal experiments, two (Table 8) with genetics, two (Table 9) dealt with smoking. Three articles [62-64] dealt with two of these subjects. In addition, we reviewed some archaeological studies [65-67], but not critically.

The prevalence of degenerative changes of the neck in the general population

In four studies it was attempted to establish the prevalence of degenerative changes in the general population:

In a random sample of 20-90+ year olds (N = 490) drawn from a general practitioner's register, Irvine et al. 1965 [68] found a prevalence of 13 % among males in the age group 20-29 years and 5 % among females in the same age group. By 40-49 years, the prevalence had risen to 66 % among males and 46 % among females. In 60-69 year olds the figures were 98 % and 91 % respectively.

Lawrence 1969 [69] investigated three general population samples from UK and one from Rhondda, all more than 14 years old. They found a clear association between age and degenerative changes. The overall prevalence was 42 % in men and 37 % in women. In 15 year olds the prevalence was 3 %, by 65 years 100 %.

Asymptomatic Japanese volunteers were examined by Matsumoto et al. 1998 [70]. They found that degenerative changes increased linearly with age and were seen in 12-17 % of discs in the twenties and 86-89 % after 60 years.

From these and other studies it clearly appears that the level C 5/6 primarily is involved followed by the levels below and above. Zapletal et al. 1997 [71] studied the atlantoaxial joint on radiographs of the nasal sinuses. They saw no abnormalities before the sixth decade, but linear progression with age thereafter: 5.4 % in the sixties, 18 % in the nineties.

Of the articles listed in Evidence Table 1 "General or clinical populations", additionally eight were dealing with the significance of age. A positive age association was demonstrated in six. In the remaining two, Kopacz et al. 1999 [72] found no association specifically between age and cervical spondylolisthesis, and Humphreys et al. 1998 [73] found no association with the ratio cord/canal, although he did note age associations with other variables.

On the basis of this it must be concluded that degenerative changes in the cervical spine are normal phenomena that inevitably develop during life and advance with age. But what are the causes? And which factors influence course and extent?

Causes of degenerative changes in the cervical spine

Intrinsic factors

All studies included in our review had taken age into consideration, in one way or another, because not relating the material to age simply resulted in exclusion. In general, age was found to be positively associated with CDSC; indeed, sometimes it turned out to be the only variable having an influence.

There was not sufficient detailed information on the various types of degeneration in relation to age to provide exact estimates of the speed of degeneration. Also many studies had but smallish study samples which would provide unstable estimates. However, it became clear that, regardless of how frequent the finding was, it would increase with age. This was the case in an almost linear fashion. For instance, this applies to disc degeneration, posterior disc protrusion, disc space narrowing and foraminal stenosis according to a study with 497 study subjects [74]. In another study with 697 study subjects, a linear progression was noted for reduction of intervertebral disc height and osteophyte formation [75]. Also when a particular degenerative change appeared late in life, the frequency increased with age, as

Zapletal 1997 [76] demonstrated for lateral atlantoaxial osteoarthrosis, a condition that was found to start in the sixth decade.

We identified two studies on the heritability of degenerative changes of the cervical spine, one of which was of inferior quality [77]. The second, a twin study of very high quality, showed a strong heritability for degeneration with estimates around 70 % [78].

In nine of the reviewed articles, differences between genders were specifically reported. In five of these there were no differences, in three the prevalence estimates were higher among men, and in one the number of discs affected was largest among women. In two large studies from the UK, men had a higher prevalence of disc degeneration than women [79;80] and also more severe degeneration [81].

External forces, loading, posture

1. Various occupations

There were 19 studies on various occupational groups, nine employing the exposed/non-exposed study design, nine others using internal control groups, and one register study. The oldest study was from 1951, the newest from 2006. One was Japanese, the rest European. The study samples ranged from 45 to almost 90,000 (the register study). The quality scores ranged from 1/10 to 10/10. They all dealt with the question of whether specific occupations resulted in more degeneration than others with, presumably, less physical exposure. Twelve studies showed a difference of some kind while seven did not.

Hult 1954 [82] compared 114 forest workers to 163 industrial workers and found that degenerative changes were more frequent and started earlier in the forest workers. In another study by the same author [83] it was found that changes developed earlier in heavy work than in light work, but the differences disappeared when the changes were more pronounced.

Irvine et al. 1965 [84] showed more prevalent changes in miners with heavy work than in other occupations with light work.

Jensen et al. 1996 [85] in a large register study found an association between frequency of hospitalization for disc herniation and professional driving, but age differences between groups seem to undermine the result.

Lawrence 1961 [86] studied cotton mill workers and non-manual workers and found that the cotton mill workers had *less* changes than the controls. In another study by the same author [87], the prevalence of degeneration was not clearly associated with occupation, but the most pronounced forms were seen in manual workers.

Mustajoki 1978 [88] found a prevalence of 40 % in parachutists and only 20 % in unexposed volunteers, and a positive dose-response relation.

Schröter 1954 [89] concluded that dentists had the same frequency as office workers, miners and carriers of heavy burdens, but more severe changes. Katevuo 1985 [90] found degenerative changes in 52 % of dentists but only in 19 % of farmers.

Takamiya [91] demonstrated a higher frequency of degenerative changes in work with neck extension, i.e. grape growing, compared to eggplant growing.

Tsirikos [92] claimed a higher incidence in jockeys, but the figures are unclear.

Ålund 1994 [93] compared former steel work grinders with neck symptoms to white collar workers who had been X-rayed because of minor trauma or neck complaints. They found more foraminal narrowing in the grinders because of osteophytes, but the disc heights were the same.

In the seven negative studies, various occupations were compared: professional military divers to non-divers [94], miners using compressed air tools to unexposed heavy workers and "brain workers" [95], office workers, drivers, machine workers and heavy workers to each other [96], underground miners, other manual workers and office workers to each other [97], cotton mill workers to a random sample of the general population [98], various occupations to each other [99], and coalminers with hand-arm vibration disease to blue collar surface workers with non-specific neck complaints [100].

Six studies dealt with groups of people who carried heavy loads on their heads. In five of them, African carriers were compared to non-carriers. The sample sizes ranged from 20 to 98 with publication dates from 1994 to 2006. Their quality scores were generally low, and in only two studies were the images read blindly. The study of best quality concluded that 89 % of carriers had degenerative changes vs. 23 % of the controls and a dose-response was apparent. All but the methodologically most inferior study also showed positive associations with carrying burdens on the head.

In conclusion, the two occupational studies of highest methodological quality were performed by Irvine [101] and Lawrence [102], pointing in opposite directions. Of the three studies of acceptable quality [103-106] one found no clear association with occupation while one showed association to parachuting and another to work with the neck extended.

2. Pilots

Another professional group that has attracted interest is pilots, on the assumption that they are exposed to strong gravitational forces.

Seven studies from 1993-2006 were identified, all using an exposed/non-exposed design, four with very small study samples (N = 24-30) and two with large samples (N=316 and 934, respectively). One study used register data with aviator years as the denominator. The quality scores were generally medium, but high particularly in relation to blind assessment of the outcome variables. According to the study with the best study design there were no consistent associations, and also the two studies with the largest study samples and of acceptable methodology failed to produce a coherent picture.

3. Sports

Seven studies on sports were identified: two on rugby players, two on soccer players, two on various sports and one on amateur diving. They were from 1975-2004 and used sample sizes of 58-510. The methodological quality was mainly poor. A possible association with rugby, boxing, soccer and diving was indicated.

4. Awkward movements

Excessive and awkward movements were investigated in three studies, one on patients with spasmodic torticollis [107], one on patients with athetoid movements [108], and one on habitual wheel-chair users [109]. The sample sizes were 34, 57 and 287, respectively. The one dealing with patients who suffered from spasmodic torticollis, being of high quality, concluded that osteoarthritis developed predominantly on the side of the direction into which the head turned, and that it occurred at higher levels than usually, namely at C2/3 and C3/4.

Smoking

We found two studies from 1994-2006 in which an association between smoking and degenerative changes was investigated.

In the study of highest quality (score 9/10), 100 asymptomatic smokers were compared to 100 asymptomatic non-smokers [110]. No association with smoking was found.

In the second study, of low quality, a case-control design was used to compare 42 patients operated for a cervical discal prolapse with radiating arm symptoms to an unknown number of patients without such symptoms [111]. A relatively strong association with smoking was noted, but it failed to include blind assessment of the outcome variables, and the cases were all patients who had symptomatic neck problems, making it unclear if the association was confused by selection bias based on symptoms that might cloud the picture.

Alcohol and diet

We found no information on these subjects, although the authors of one archaeological article hypothesized that differences between study samples might partially be explained by dietary circumstances.

Animal experiments

Six studies from 1984-2006, all Asian but one, reported experiments on mice [112-114], rabbits [115;116] or rats [117]. The quality score was generally high (6/10 - 10/10).

Kimura [112] found more advanced disc degeneration in transgenic mice with a collagen defect. Mason [113] showed more degenerative changes at the levels C5-Th3 in mice with heritable kyphosis. Wada [118] implanted electrodes unilaterally in the trapezius muscle of rabbits and stimulated cyclically resulting in muscle contractions during three periods up to three months. In the most exposed group (200.000 cycles during two months) degenerative changes were shown to be more frequent and more pronounced histologically, but not radiologically.

In the three remaining experiments on mice, rats and rabbits respectively, posterior cervical paravertebral muscles were detached, ligaments resected and the animals (experimental and controls) killed at intervals. Miyamoto [119] saw histological changes two months postoperatively and radiological degenerative changes in all operated animals 12 months after operation, but not before and not in controls. Baogan [115] observed that osteophytes arised from proliferation of articular cartilage through endochondral ossification. After three months the operated animals showed more degenerative changes similar to those in the controls after eight months. By histological and biochemical analyses Wang [120] showed progressive degenerative changes with inflammation from three months on in the experimental group.

Post-hoc analysis

Association between degeneration of the neck and symptoms

Whether associations exist between the varieties of degeneration and symptoms is not clear. The results of eight studies found on this subject went in different directions.

A Jamaican population was compared to a British population and found to have more severe and widespread degeneration yet complained less of symptoms [121]. Echarri [122] also found no correlation between symptoms and degeneration, and noted that the women who had the highest pain

31

scores had the least degenerative changes. In a study of dentists, it was noted that the majority (88%) had degenerative changes but that the minority (39%) had symptoms [123]. In a study of military parachutists, CDSC were associated with stiffness, but not with headaches or neck pain [124].

On the other hand, Humphreys [125] noted no association with symptoms and lordosis or disc height, but an association was found with foraminal width. Siivola [126], in a small study of young people, claimed a significant association between disc herniation and pain, but in fact the p-value was only 0.1. Two studies reported a significant association: Mahbub [127], in a randomly selected sample of coolies from Bangladesh, reported that neck symptoms were more common in those with degeneration. Lawrence, in a 1969 report from the UK [128], found that people with disc degeneration had longer duration of pain and loss of work from cervico-brachial pain, and that this was more common in men with major degeneration than in those with minor degeneration.

DISCUSSION

In summary, we conclude that so called "degenerative changes" in the cervical spine should be considered a biological phenomenon that begins in teenagers and progresses with a clear age-association. In old age, everybody will have them. Further, the speed with which it develops is probably strongly genetically determined. The amount and quality of the existing literature does not yield a clear picture of possible associations between occupation and degenerative changes in the cervical spine, specific exposures, dose-response relations and gender differences not to mention. It has been relatively convincingly shown that prolonged awkward positions, as well as extremely repetitive movements of the neck and carrying heavy loads on the head, will induce early changes, but the differences disappear as the changes progress over time. It is possible that head trauma contributes as well, and probably rheumatoid arthritis and various kinds of spondylitis, but these inflammatory diseases will leave specific characteristic alterations besides the CDSC.

Strengths and weaknesses of this review

A thorough librarian-assisted literature search was undertaken, which should have captured most relevant literature in this area. The review was systematic and performed independently by two authors, with few points of disagreement. Issues of quality were taken into account in a non-rigid manner, painstaking aiming at objectivity.

However, the search may have failed to capture some relevant literature, and the same might have happened during the screening process. The check-list items, used to describe the articles and judge their quality, had to be designed specifically for this study, and another approach may have rendered somewhat different results. Although the quality assessment was performed systematically, aided by key words for each quality item, it had of course a subjective element to it. Also, because the quality of studies in general was low, it is likely that a certain tolerance crept into the assessment, resulting in higher marks than deserved.

Strengths and weaknesses of the literature

Only few studies have been devoted to this topic. Those that exist are generally simplistic in style, and only a minority fulfilled all or most of our quality criteria. The vast majority were therefore of doubtful value.

It was obvious that this is not a prioritized research area. Most investigations appear to have been designed in an ad hoc fashion, as single studies, and not as part of a long-term research program. Pilots have attracted a fair bit of interest whereas larger occupational groups have been studied only rarely. Also head carriers have attracted some attention, but unfortunately the quality of these studies was mainly low. No other occupational group has been studied several times. It was therefore not possible to classify occupations according to cervical load and movement and study the amount of degeneration in a "descending" order.

Another weakness of the literature is that there was no serious information on dosage, neither in terms of work load nor in relation to duration of exposure, and modifying factors have not been studied in a convincing manner.

It was also not possible to evaluate specific diagnostic entities. Only some researchers had taken the precaution of using previously described standardized definitions of the degenerative changes. Many preferred to use their own definitions, whereas some even failed to define what they meant by "degeneration". This resulted in a fair bit of heterogeneity of outcome measures, making comparisons between studies difficult or impossible.

In addition, the method sections of articles often included a list of degenerative changes whereas not all were reported upon in the result section in an unequivocal manner. This clouds the interpretation. Why were some degenerative phenomena studied but not reported? A natural explanation would be that nothing was found. This approach results in publication bias, and is a nuisance factor that results in an over-emphasis on positive findings. Interestingly, some of the better studies were the very first ones to appear [129;130]. They included clear definitions of degeneration, used blinded radiologic assessment, and dealt with clinically relevant occupational groups.

Apart from some narrative reviews of questionable quality, only one systematic review of older date concerning the relation between physical occupational factors and CDSC (among other shoulder-neck diagnoses) was found [131]. In this review, published at a time when the literature of course was even sparser than now, a possible elevated risk of CDSC was suggested for miners, dentists, and people with heavy work. This is not contradicted by the present review, but then again, the field has not become much more clarified during the elapsed 21 years.

Evidence synthesis regarding physical exposures: Causation

All occupations involve a complex mixture of various exposures to the cervical spine. In a thorough gathering of evidence one must consider if common exposure characteristics between the described occupations and other settings within reason can be identified and related to cervical CDSC. In this respect, some main groups of physical exposures are treated in the reviewed literature: *1. vibration exposure*, *2. prolonged axial cervical strain*, *3. prolonged tangential or rotational static strain* (i.e., "extreme" head postures), *4. repetitive movements of the cervical spine without external impulse loading*, *5. repetitive movements of the cervical spine with external impulse loading*, and *6.diving*.

The major problem in the existing literature is that different physical exposures are closely interwoven in the investigated settings. In only a minority of the studies efforts were made to describe the physical exposures more specifically than solely by job title. An illustrative example of the problem is *vibration exposure* which was primarily represented in the studies of professional drivers and jet pilots (whole body vibration) and of miners (hand-arm vibration). In these studies, no attempts to describe the actual levels of vibration exposure were made, and vibration was mixed with other relevant exposures (e.g. for jet pilots G-forces, acceleration/deceleration, and neck traumas during in-flight situations).

Prolonged axial cervical strain in this context is an exception to some degree since this exposure must be considered the dominant one in the studies of head carrying, in which some convergence of findings were found, indicating that this exposure increases the risk of CDSC.

Prolonged tangential or rotational static strain ("extreme" head postures) is probably primarily met in the studies of dentists [132] and grape growers [133]. Indeed, both studies suggested augmented risks of CDSC, but the specific pattern of neck positions was only superficially described. It

was not clear to which degree the neck postures were also dynamic, i.e. the repetition of neck movements was not stated. Miners can be presumed to have extra tangential-rotational cervical strain due to the weight of the helmet, but given the vagueness of findings on this occupation they do not further clarify the subject.

Repetitive movements of the cervical spine without external impulse loading are, in the reviewed human literature, only present in the two special settings of patients with spasmodic torticollis (with sudden, repetitive neck movements) and wheelchair users (with frequent repetitive neck flexion/extensions). Both studies displayed an association between patient status and CDSC suggesting that repetitive movements in some circumstances might be a causative factor. This is supported by the animal experiment of Wada [134] where 200.000 neck extension/flexion movements (within physiological motion range) during two months lead to CDSC.

Repetitive movements of the cervical spine with external impulse loading is a somewhat heterogeneous exposure group characterised by differences in the externally applied forces, the direction of the movements, and the degree of repetition. Different types of neck movements combined with external force are undoubtedly present among parachutists, rugby players, boxers and soccer players. Of the six studies treating these special forceful activities, five indicated an elevated risk of CDSC. This indicates that forceful impulse loadings to the cervical spine during a certain period of time are entailed by elevated risk of CDSC. Still, however, the studies did not allow any reasonable clear assessment of exposure-response relations.

Hereto, one must consider that in such forceful activities, also major traumas to the neck are common which can be partly responsible for the elevated risk of CDSC. Major neck trauma as predictor of CDSC, a topic not covered in this review, seems to be only sporadically touched in the literature. In the well-designed population-based study of Irvine [135], however, significant but only slightly higher prevalence of CDSC was recorded in men recollecting head or neck injuries.

Two animal cadaver studies displayed that a combination of prolonged cervical axial strain and repetitive flexion-extensions often produces cervical disc herniation [136;137], but these findings do not have any human epidemiological counterpart at present.

Dose-response

In general, the literature failed to address the issue of dose-response, both in terms of actual exposure and in terms of duration. However, it is possible indirectly to deduce that CDSC does arise in some dose-response manner. For example, carrying loads on the head or on the upper back with a band across the forehead entails a strong strain on the cervical spine. This way of transporting burdens probably was common in ancient times [138] but is now practised only in some developing countries. According to the literature, this is likely to induce degenerative changes in the spine. Although this has no relevance to modern western civilizations, it illustrates that excessive mechanical loads on the spine are capable of giving rise to degenerative changes. The same can be said about work with the head in extreme postures such as prolonged extension, e.g. when a grapegrower is looking upwards much of the time. And it applies to repetitive abnormal, extreme head movements, as has been shown in patients with spasmodic torticollis [139]. Findings in experimental animals point in the same direction.

Gender

It was impossible to conclude whether the relation between physical exposures and CDSC was influenced by gender. Among the very few studies including both genders and not only men, the difference in occupational spectrum was too large to permit any interpretation.

Prognostic factors

The vast majority of studies were of cross-sectional nature. Such a design does not allow disentangling of risk factors precipitating or influencing the course (prognosis) of a condition.

Relation between CDSC and symptoms

Whether associations exist between the varieties of degeneration and symptoms is not clear. The results of eight studies found on this subject went in different directions.

A Jamaican population was compared to a British population and found to have more severe and widespread degeneration yet complained less of symptoms [140]. Echarri [122] also found no correlation between symptoms and degeneration, and noted that the women who had the highest pain scores had the least degenerative changes. In a study of dentists, it was noted that the majority (88%) had degenerative changes but that a minority (39%) had symptoms [141]. In a study of military parachutists, CDSC were associated with stiffness, but not with headaches or neck pain [142].

On the other hand, Humphreys [143] noted no association with symptoms and lordosis or disc height, but an association was found with foraminal width. Siivola [144], in a small study of young people, claimed an association between disc herniation and pain. Two studies reported a significant association: Mahbub [145], in a randomly selected sample of coolies from Bangladesh, reported that neck symptoms were more common in those with degeneration, while Lawrence [146] found that people with disc degeneration had longer duration of pain and loss of work from cervico-brachial pain, and that this was more common in men with major degeneration than in those with minor degeneration.

As a whole, we found no clear association between CDSC and symptoms. In comparison, the question of what is the source of pain has been investigated in the lumbar spine. In a recent report based on a population-generated sample of 40 years old Danish men, who had an MRI-scan of the lumbar spine and responded to a questionnaire on back symptoms and consequences, it was found that disc degeneration, per se, was not clearly associated with pain reporting, but that the presence of Modic changes were [147]. Modic changes are visible on MRI only. They are supposed to consist of cracked vertebral endplates surrounded by oedema in the vertebral body. Almost all persons with Modic changes in that study reported having had low back pain in the past year vs. about 50 % of those with severe disc degeneration without Modic changes resembled that among those individuals in the study who did not have severe disc degeneration.

No such investigations have been done on the cervical spine. To our knowledge, only one study is published on the presence of Modic changes in this region [27], which in a retrospective analysis noted a prevalence of 16 % among 118 patients, most common at the C5-6 level.

Grading of evidence

Different systems for grading of evidence are usable, for instance GRADE However, as this is a publication initiated by Danish institutions, we have chosen the system specified by the Scientific Committee of the Danish Society of Occupational and Environmental Medicine, see Appendix 3.

CONCLUSIONS

The amount and quality of the existing literature does not yield a clear picture of possible associations between occupation and degenerative changes in the cervical spine, specific exposures, dose-response relations and gender differences not to mention. On basis of this, the only conclusions that can be drawn are:

There is insufficient evidence of a causal association between CDSC and prolonged tangential or rotational strain (i.e., "extreme" head postures), repetitive movements of the cervical spine without
There is limited evidence for an association between CDSC and repetitive movements of the cervical spine with external impulse loading, and for an association between CDSC and prolonged heavy axial cervical strain.

References

- [1] Carroll LJ, Hogg-Johnson S, van d, V, Haldeman S, Holm LW, Carragee EJ, Hurwitz EL, Cote P, Nordin M, Peloso PM, guzman J, Cassidy JD. Course and prognostic factors for neck pain in the general population: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine 2008; 33: S75-S82.
- [2] Bridges PS. Vertebral arthritis and physical activities in the prehistoric southeastern United States. Am J Phys Anthropol 1994; 93: 83-93.
- [3] Chapman FH. Vertebral osteophytosis in prehistoric populations of central and southern Mexico. Am J Phys Anthropol 1972; 36: 31-38.
- [4] Gerszten PC, Gerszten E, Allison MJ. Diseases of the spine in South American mummies. Neurosurgery 2001; 48: 208-213.
- [5] Weber J, Czarnetzki A, Spring A. Paleopathological features of the cervical spine in the early middle ages: natural history of degenerative diseases. Neurosurgery 2003; 53: 1418-1423.
- [6] Lestini WF, Wiesel SW. The pathogenesis of cervical spondylosis. Clin Orthop Relat Res 1989; 69-93.
- [7] Izzo R, Diano AA, Muto M. Biomechanics of the spine. Rivista di Neuroradiologia 2002; 15: 715-726.
- [8] Hirsch C, Schajowicz R, Galante J. Structural changes in the cervical spine. A study on autopsy specimens in different age groups. Acta Orthop Scand 1967; Suppl-77.
- [9] Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine 2006; 31: 2151-2161.
- [10] Battie MC, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences. Spine 2004; 29: 2679-2690.
- [11] Sylven B. On the biology of nucleus pulposus. Acta Orthop Scand 1951; 20: 275-279.
- [12] Kirkaldy-Willis WH, Wedge JH, Yong-Hing K, Reilly J. Pathology and pathogenesis of lumbar spondylosis and stenosis. Spine 1978; 3: 319-328.
- [13] Oda J, Tanaka H, Tsuzuki N. Intervertebral disc changes with aging of human cervical vertebra. From the neonate to the eighties. Spine 1988; 13: 1205-1211.
- [14] Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996; 98: 996-1003.
- [15] Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995; 20: 1307-1314.
- [16] Lyons G, Eisenstein SM, Sweet MB. Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 1981; 673: 443-453.
- [17] Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg Br 1986; 68: 36-41.
- [18] Tanaka M, Nakahara S, Inoue H. A pathologic study of discs in the elderly. Separation between the cartilaginous endplate and the vertebral body. Spine 1993; 18: 1456-1462.
- [19] Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 2002; 27: 2631-2644.
- [20] Oda J, Tanaka H, Tsuzuki N. Intervertebral disc changes with aging of human cervical vertebra. From the neonate to the eighties. Spine 1988; 13: 1205-1211.
- [21] Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M. Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 1996; 21: 452-461.
- [22] Videman T, Nurminen M. The occurrence of anular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 2004; 29: 2668-2676.
- [23] Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 2002; 27: 2631-2644.
- [24] Videman T, Nurminen M. The occurrence of anular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 2004; 29: 2668-2676.
- [25] Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166: 193-199.
- [26] De RA, Kressel H, Spritzer C, Dalinka M. MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 1987; 149: 531-534.
- [27] Peterson CK, Humphreys BK, Pringle TC. Prevalence of modic degenerative marrow changes in the cervical spine. J Manipulative Physiol Ther 2007; 30: 5-10.
- [28] Katz ME, Teitelbaum SL, Gilula LA, Resnick D, Katz SJ. Radiologic and pathologic patterns of end-plate-based vertebral sclerosis. Invest Radiol 1988; 23: 447-454.
- [29] Fletcher G, Haughton VM, Ho KC, Yu SW. Age-related changes in the cervical facet joints: studies with cryomicrotomy, MR, and CT. AJNR Am J Neuroradiol 1990; 11: 27-30.
- [30] Shedid D, Benzel EC. Cervical spondylosis anatomy: pathophysiology and biomechanics. Neurosurgery 2007; 60: S7-13.
- [31] Rao RD, Currier BL, Albert TJ, Bono CM, Marawar SV, Poelstra KA, Eck JC. Degenerative cervical spondylosis: clinical syndromes, pathogenesis, and management. J Bone Joint Surg Am 2007; 89: 1360-1378.

- [32] Joosab M, Torode M, Rao PV. Preliminary findings on the effect of load-carrying to the structural integrity of the cervical spine. Surg Radiol Anat 1994; 16: 393-398.
- [33] Gallucci M, Limbucci N, Paonessa A, Splendiani A. Degenerative disease of the spine. Neuroimaging Clin N Am 2007; 17: 87-103.
- [34] Resnick D. Degenerative diseases of the vertebral column. Radiology 1985; 156: 3-14.
- [35] Christe A, Laubli R, Guzman R, Berlemann U, Moore RJ, Schroth G, Vock P, Lovblad KO. Degeneration of the cervical disc: histology compared with radiography and magnetic resonance imaging. Neuroradiology 2005; 47: 721-729.
- [36] Gallucci M, Limbucci N, Paonessa A, Splendiani A. Degenerative disease of the spine. Neuroimaging Clin N Am 2007; 17: 87-103.
- [37] Gallucci M, Limbucci N, Paonessa A, Splendiani A. Degenerative disease of the spine. Neuroimaging Clin N Am 2007; 17: 87-103.
- [38] Kettler A, Werner K, Wilke HJ. Morphological changes of cervical facet joints in elderly individuals. Eur Spine J 2007; 16: 987-992.
- [39] Shao Z, Rompe G, Schiltenwolf M. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine 2002; 27: 263-268.
- [40] Fejer R, Kyvik KO, Hartvigsen J. The prevalence of neck pain in the world population: a systematic critical review of the literature. Eur Spine J 2006; 15: 834-848.
- [41] Carroll LJ, Hogg-Johnson S, van d, V, Haldeman S, Holm LW, Carragee EJ, Hurwitz EL, Cote P, Nordin M, Peloso PM, guzman J, Cassidy JD. Course and prognostic factors for neck pain in the general population: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine 2008; 33: S75-S82.
- [42] Carroll LJ, Hogg-Johnson S, van d, V, Haldeman S, Holm LW, Carragee EJ, Hurwitz EL, Cote P, Nordin M, Peloso PM, guzman J, Cassidy JD. Course and prognostic factors for neck pain in the general population: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine 2008; 33: S75-S82.
- [43] Côté P, Cassidy JD, Carroll LJ. The Saskatchewan Health and Back Pain Survey. The prevalence of neck pain and related disability in Saskatchewan adults. Spine 1998; 23: 1689-1698.
- [44] Nordin M, Carragee EJ, Hogg-Johnson S, Weiner SS, Hurwitz EL, Peloso PM, guzman J, van d, V, Carroll LJ, Holm LW, Cote P, Cassidy JD, Haldeman S. Assessment of neck pain and its associated disorders: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine 2008; 33: S101-S122.
- [45] Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology 2007; 245: 43-61.
- [46] Videman T, Sarna S, Battie MC, Koskinen S, Gill K, Paananen H, Gibbons L. The long-term effects of physical loading and exercise lifestyles on back-related symptoms, disability, and spinal pathology among men. Spine 1995; 20: 699-709.
- [47] Videman T, Battie MC, Parent E, Gibbons LE, Vainio P, Kaprio J. Progression and determinants of quantitative magnetic resonance imaging measures of lumbar disc degeneration: a five-year follow-up of adult male monozygotic twins. Spine 2008; 33: 1484-1490.
- [48] Bovenzi M, Hulshof CT. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain (1986-1997). Int Arch Occup Environ Health 1999; 72: 351-365.
- [49] Battie MC, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences. Spine 2004; 29: 2679-2690.
- [50] Videman T, Simonen R, Usenius J, Osterman K, Battie M. The long-term effects of rally driving on spinal pathology. Clin Biomech (Bristol, Avon) 2000; 15: 83-86.
- [51] Videman T, Levalahti E, Battie MC. The effects of anthropometrics, lifting strength, and physical activities in disc degeneration. Spine 2007; 32: 1406-1413.
- [52] Battie MC, Videman T, Gill K, Moneta GB, Nyman R, Kaprio J, Koskenvuo M. 1991 Volvo Award in clinical sciences. Smoking and lumbar intervertebral disc degeneration: an MRI study of identical twins. Spine 1991; 16: 1015-1021.
- [53] Battié MC, Videman T. Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 2006; 88: 3-9.
- [54] Videman T, Battie MC, Parent E, Gibbons LE, Vainio P, Kaprio J. Progression and determinants of quantitative magnetic resonance imaging measures of lumbar disc degeneration: a five-year follow-up of adult male monozygotic twins. Spine 2008; 33: 1484-1490.
- [55] Battie MC, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences. Spine 2004; 29: 2679-2690.
- [56] Videman T, Levalahti E, Battie MC. The effects of anthropometrics, lifting strength, and physical activities in disc degeneration. Spine 2007; 32: 1406-1413.
- [57] Moja LP, Telaro E, D'Amico R, Moschetti I, Coe L, Liberati A. Assessment of methodological quality of primary studies by systematic reviews: results of the metaquality cross sectional study. BMJ 2005; 330: 1053-1057.
- [58] Wada E, Ebara S, Saito S, Ono K. Experimental spondylosis in the rabbit spine. Overuse could accelerate the spondylosis. Spine 1992; 17: S1-S6.
- [59] Jager HJ, Gordon-Harris L, Mehring UM, Goetz GF, Mathias KD. Degenerative change in the cervical spine and load-carrying on the head. Skeletal Radiol 1997; 26: 475-481.
- [60] Mahbub MH, Laskar MS, Seikh FA, Altaf MH, Inoue M, Yokoyama K, Wakui T, Harada N. Prevalence of cervical spondylosis and musculoskeletal symptoms among coolies in a city of Bangladesh. J Occup Health 2006; 48: 69-73.
- [61] Mustajoki P, Nummi J, Meurman K. Permanent changes in the spines of military parachutists. Aviat Space Environ Med 1978; 49: 823-826.
- [62] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [63] Jung K, Schumann E. [Correlation between vertebral syndrome complaints and radiographically demonstrable changes of the cervical vertebrae]. Wien Med Wochenschr 1975; 125: 79-82.

- [64] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [65] Bridges PS. Vertebral arthritis and physical activities in the prehistoric southeastern United States. Am J Phys Anthropol 1994; 93: 83-93.
- [66] Chapman FH. Vertebral osteophytosis in prehistoric populations of central and southern Mexico. Am J Phys Anthropol 1972; 36: 31-38.
- [67] Gerszten PC, Gerszten E, Allison MJ. Diseases of the spine in South American mummies. Neurosurgery 2001; 48: 208-213.
- [68] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [69] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [70] Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, Shiga H. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br 1998; 80: 19-24.
- [71] Zapletal J, de Valois JC. Radiologic prevalence of advanced lateral C1-C2 osteoarthritis. Spine 1997; 22: 2511-2513.
- [72] Kopacz KJ, Connolly PJ. The prevalence of cervical spondylolisthesis. Orthopedics 1999; 22: 677-679.
- [73] Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, Sartori M. The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20-60 years as measured by magnetic resonance imaging. A descriptive approach. Spine 1998; 23: 2180-2184.
- [74] Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, Shiga H. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br 1998; 80: 19-24.
- [75] Zejda JE, Stasiow B. Cervical spine degenerative changes (narrowed intervertebral disc spaces and osteophytes) in coal miners. Int J Occup Med Environ Health 2003: 16: 49-53.
- [76] Zapletal J, de Valois JC. Radiologic prevalence of advanced lateral C1-C2 osteoarthritis. Spine 1997; 22: 2511-2513.
- [77] Palmer PE, Stadalnick R, Arnon S. The genetic factor in cervical spondylosis. Skeletal Radiol 1984; 11: 178-182.
- [78] Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 1999; 42: 366-372.
- [79] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [80] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [81] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [82] Hult L. The Munkfors investigation; a study of the frequency and causes of the stiff neck-brachialgia and lumbago-sciatica syndromes, as well as observations on certain signs and symptoms from the dorsal spine and the joints of the extremities in industrial and forest workers. Acta Orthop Scand Suppl 1954; 16: 1-76.
- [83] Hult L. Cervical, dorsal and lumbar spinal syndromes; a field investigation of a non-selected material of 1200 workers in different occupations with special reference to disc degeneration and so-called muscular rheumatism. Acta Orthop Scand Suppl 1954; 17: 1-102.
- [84] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [85] Jensen MV, Tuchsen F, Orhede E. [Prolapsed cervical intervertebral disk in professional drivers in Denmark 1981-1990]. Ugeskr Laeger 1998; 160: 3913-3916.
- [86] Lawrence JS. Rheumatism in cotton operatives. Br J Ind Med 1961; 18: 270-276.
- [87] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [88] Mustajoki P, Nummi J, Meurman K. Permanent changes in the spines of military parachutists. Aviat Space Environ Med 1978; 49: 823-826.
- [89] Schröter VG. Hat die berufliche Belastung Bedeutung f
 ür die Entstehung oder Verschlimmerung der Osteochondrose und Spondylose der Hals. Dtsch Gesundheitsw 1959; 4: 174-177.
- [90] Katevuo K, Aitasalo K, Lehtinen R, Pietila J. Skeletal changes in dentists and farmers in Finland. Community Dent Oral Epidemiol 1985; 13: 23-25.
- [91] Takamiya Y, Nagata K, Fukuda K, Shibata A, Ishitake T, Suenaga T. Cervical spine disorders in farm workers requiring neck extension actions. J Orthop Sci 2006; 11: 235-240.
- [92] Tsirikos A, Papagelopoulos PJ, Giannakopoulos PJ, Boscainos PJ, Zoubos AB, Kasseta M, Nikiforidis PA, Korres DS. Degenerative spondyloarthropathy of the cervical and lumbar spine in jockeys. Orthopedics 2001; 24: 561-564.
- [93] Alund M, Larsson SE, Lewin T. Work-related persistent neck impairment: a study on former steelworks grinders. Ergonomics 1994; 37: 1253-1260.
- [94] Bartsch T, Cordes P, Keil R, Reuter M, Hutzelmann A, Tetzlaff K, Deuschl G. Cervico-thoracic disc protrusions in controlled compressed-air diving: clinical and MRI findings. J Neurol 2001; 248: 514-516.
- [95] Beck W. Röntgenuntersuchungen der Halswirbelsäulen. Hefte Unfallheilkd 1951; 42: 61-75.
- [96] Jung K, Schumann E. [Correlation between vertebral syndrome complaints and radiographically demonstrable changes of the cervical vertebrae]. Wien Med Wochenschr 1975; 125: 79-82.
- [97] Kellgren JH, Lawrence JS. Rheumatism in miners. II. X-ray study. Br J Ind Med 1952; 9: 197-207.
- [98] Lawrence JS. Rheumatism in cotton operatives. Br J Ind Med 1961; 18: 270-276.
- [99] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.

- [100] Alund M, Larsson SE, Lewin T. Work-related persistent neck impairment: a study on former steelworks grinders. Ergonomics 1994; 37: 1253-1260.
- [101] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [102] Lawrence JS. Rheumatism in cotton operatives. Br J Ind Med 1961; 18: 270-276.
- [103] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [104] Mustajoki P, Nummi J, Meurman K. Permanent changes in the spines of military parachutists. Aviat Space Environ Med 1978; 49: 823-826.
- [105] Mustajoki P, Nummi J, Meurman K. Permanent changes in the spines of military parachutists. Aviat Space Environ Med 1978; 49: 823-826.
- [106] Takamiya Y, Nagata K, Fukuda K, Shibata A, Ishitake T, Suenaga T. Cervical spine disorders in farm workers requiring neck extension actions. J Orthop Sci 2006; 11: 235-240.
- [107] Chawda SJ, Munchau A, Johnson D, Bhatia K, Quinn NP, Stevens J, Lees AJ, Palmer JD. Pattern of premature degenerative changes of the cervical spine in patients with spasmodic torticollis and the impact on the outcome of selective peripheral denervation. J Neurol Neurosurg Psychiatry 2000; 68: 465-471.
- [108] Ebara S, Harada T, Yamazaki Y, Hosono N, Yonenobu K, Hiroshima K, Ono K. Unstable cervical spine in athetoid cerebral palsy. Spine 1989; 14: 1154-1159.
- [109] Kojima A, Nakajima A, Koyama K. Cervical spondylosis in paraplegic patients and analysis of the wheelchair driving action: a preliminary communication. Spinal Cord 1997; 35: 768-772.
- [110] Gore DR, Carrera GF, Glaeser ST. Smoking and degenerative changes of the cervical spine: a roentgenographic study. Spine J 2006; 6: 557-560.
- [111] An HS, Silveri CP, Simpson JM, File P, Simmons C, Simeone FA, Balderston RA. Comparison of smoking habits between patients with surgically confirmed herniated lumbar and cervical disc disease and controls. J Spinal Disord 1994; 7: 369-373.
- [112] Kimura T, Nakata K, Tsumaki N, Miyamoto S, Matsui Y, Ebara S, Ochi T. Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop 1996; 20: 177-181.
- [113] Mason RM, Palfrey AJ. Intervertebral disc degeneration in adult mice with hereditary kyphoscoliosis. J Orthop Res 1984; 2: 333-338.
- [114] Miyamoto S, Yonenobu K, Ono K. Experimental cervical spondylosis in the mouse. Spine 1991; 16: S495-S500.
- [115] Baogan P, Shuxun H, Qi S, Lianshun J. Experimental study on mechanism of vertebral osteophyte formation. Chin J Traumatol 2000; 3: 202-205.
- [116] Wada E, Ebara S, Saito S, Ono K. Experimental spondylosis in the rabbit spine. Overuse could accelerate the spondylosis. Spine 1992; 17: S1-S6.
- [117] Wang YJ, Shi Q, Lu WW, Cheung KC, Darowish M, Li TF, Dong YF, Zhou CJ, Zhou Q, Hu ZJ, Liu M, Bian Q, Li CG, Luk KD, Leong JC. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model. Spine 2006; 31: 1532-1538.
- [118] Wada E, Ebara S, Saito S, Ono K. Experimental spondylosis in the rabbit spine. Overuse could accelerate the spondylosis. Spine 1992; 17: S1-S6.
- [119] Miyamoto S, Yonenobu K, Ono K. Experimental cervical spondylosis in the mouse. Spine 1991; 16: S495-S500.
- [120] Wang YJ, Shi Q, Lu WW, Cheung KC, Darowish M, Li TF, Dong YF, Zhou CJ, Zhou Q, Hu ZJ, Liu M, Bian Q, Li CG, Luk KD, Leong JC. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model. Spine 2006; 31: 1532-1538.
- [121] Bremner JM, Lawrence JS, Miall WE. Degenerative joint disease in a Jamaican rural population. Ann Rheum Dis 1968; 27: 326-332.
- [122] Echarri JJ, Forriol F. Effect of axial load on the cervical spine: a study of Congolese woodbearers. Int Orthop 2002; 26: 141-144.
- [123] Katevuo K, Aitasalo K, Lehtinen R, Pietila J. Skeletal changes in dentists and farmers in Finland. Community Dent Oral Epidemiol 1985; 13: 23-25.
- [124] Mustajoki P, Nummi J, Meurman K. Permanent changes in the spines of military parachutists. Aviat Space Environ Med 1978; 49: 823-826.
- [125] Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, Sartori M. The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20-60 years as measured by magnetic resonance imaging. A descriptive approach. Spine 1998; 23: 2180-2184.
- [126] Siivola SM, Levoska S, Tervonen O, Ilkko E, Vanharanta H, Keinanen-Kiukaanniemi S. MRI changes of cervical spine in asymptomatic and symptomatic young adults. Eur Spine J 2002; 11: 358-363.
- [127] Mahbub MH, Laskar MS, Seikh FA, Altaf MH, Inoue M, Yokoyama K, Wakui T, Harada N. Prevalence of cervical spondylosis and musculoskeletal symptoms among coolies in a city of Bangladesh. J Occup Health 2006; 48: 69-73.
- [128] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [129] Lawrence JS. Rheumatism in cotton operatives. Br J Ind Med 1961; 18: 270-276.
- [130] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [131] Hagberg M, Wegman DH. Prevalence rates and odds ratios of shoulder-neck diseases in different occupational groups. Br J Ind Med 1987; 44: 602-610.
- [132] Katevuo K, Aitasalo K, Lehtinen R, Pietila J. Skeletal changes in dentists and farmers in Finland. Community Dent Oral Epidemiol 1985; 13: 23-25.
- [133] Takamiya Y, Nagata K, Fukuda K, Shibata A, Ishitake T, Suenaga T. Cervical spine disorders in farm workers requiring neck extension actions. J Orthop Sci 2006; 11: 235-240.
- [134] Wada E, Ebara S, Saito S, Ono K. Experimental spondylosis in the rabbit spine. Overuse could accelerate the spondylosis. Spine 1992; 17: S1-S6.
- [135] IRVINE DH, FOSTER JB, NEWELL DJ, KLUKVIN BN. PREVALENCE OF CERVICAL SPONDYLOSIS IN A GENERAL PRACTICE. Lancet 1965; 1: 1089-1092.
- [136] Callaghan JP, McGill SM. Intervertebral disc herniation: studies on porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 2001; 16: 28-37.

- [137] Tampier C, Drake DJ, Callaghan JP, McGill SM. Progressive disc herniation: an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model. Spine 2007; 32: 2869-2874.
- [138] Gerszten PC, Gerszten E, Allison MJ. Diseases of the spine in South American mummies. Neurosurgery 2001; 48: 208-213.
- [139] Chawda SJ, Munchau A, Johnson D, Bhatia K, Quinn NP, Stevens J, Lees AJ, Palmer JD. Pattern of premature degenerative changes of the cervical spine in patients with spasmodic torticollis and the impact on the outcome of selective peripheral denervation. J Neurol Neurosurg Psychiatry 2000; 68: 465-471.
- [140] Bremner JM, Lawrence JS, Miall WE. Degenerative joint disease in a Jamaican rural population. Ann Rheum Dis 1968; 27: 326-332.
- [141] Katevuo K, Aitasalo K, Lehtinen R, Pietila J. Skeletal changes in dentists and farmers in Finland. Community Dent Oral Epidemiol 1985; 13: 23-25.
- [142] Mustajoki P, Nummi J, Meurman K. Permanent changes in the spines of military parachutists. Aviat Space Environ Med 1978; 49: 823-826.
- [143] Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, Sartori M. The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20-60 years as measured by magnetic resonance imaging. A descriptive approach. Spine 1998; 23: 2180-2184.
- [144] Siivola SM, Levoska S, Tervonen O, Ilkko E, Vanharanta H, Keinanen-Kiukaanniemi S. MRI changes of cervical spine in asymptomatic and symptomatic young adults. Eur Spine J 2002; 11: 358-363.
- [145] Mahbub MH, Laskar MS, Seikh FA, Altaf MH, Inoue M, Yokoyama K, Wakui T, Harada N. Prevalence of cervical spondylosis and musculoskeletal symptoms among coolies in a city of Bangladesh. J Occup Health 2006; 48: 69-73.
- [146] Lawrence JS. Disc degeneration. Its frequency and relationship to symptoms. Ann Rheum Dis 1969; 28: 121-138.
- [147] Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Yde C. Modic changes and their associations with clinical findings. Eur Spine J 2006; 15: 1312-1319.

Appendix 1

Literature search

Data sources

Data sources

The main data source was a systematic literature search employing the *PubMed* and *Ovid Embase* databases from their beginning, i.e. for PubMed 1966 (a minor body of literature however already from 1865), for Embase 1980 and unto the date of the final search. The final literature search was done the 26 June 2008.

In order to make a more comprehensive search for primarily Scandinavian doctoral and PhD theses, additional searches were run in three common Scandinavian librarian databases, i.e. the Danish bibliotek.dk which records all literature of Danish public and research libraries, and two Swedish internet resources Libris (which registers literature of Swedish research libraries and specialised libraries published from 1976 and onwards) and Svemed+, which covers Swedish and much other Scandinavian medical literature from 1977 and onwards.

Search strategy

Concerning the outcomes, a broad approach was applied, which by and large covered any pathology in the cervical spine, at the same time avoiding diffuse searching in the total spine literature. Different free text words and medical subject headings were combined (using Boolean logical operators), including terms such as *neck*, *neck pain*, *neck injury*, *cervical*, *spine*, *disc*, *cervical spine*, *radiculopathy*, *cervical spondylosis*, *cervicobrachial neuralgia*, *cervical myelopathy*, *spine*, *spinal diseases*, *prolapse*, *intervertebral disk hernia*, *intervertebral disk degeneration* and *osteophyte*.

The other search group addressing the exposures and study types of interest covered a broad spectrum of physical-mechanical factors (not single traumas) including both studies of epidemiological and experimental design (see below). In the same manner as with the outcome searches, different free text words and Mesh words were combined with Boolean logical operators. For the partial searches addressing the epidemiological studies, terms as the following were used: *occupational, occupational diseases, occupational exposure, work*, materials handling, physical activity, carry*, transportation, aerospace medicine, vibration, gravitation, G-force*, biomechanics, mechanics, accelerat*, and sports medicine.*

For the partial searches aiming at human and animal experimental studies, central terms were *cadaver**, *anatomic models*, *in vitro*, *autopsy*, *experiment**, *human experimentation*, *animal**, *"models*, *animal"* etc.

As an aid in the searching for background literature regarding non-physical potential risk factors of CDSC, the constructed outcome search syntax was combined (using the Boolean operator "AND") with search terms such as *risk, causality, epidemiology, aetiology, physiopathology* and *pathology* etc.

Searches

The searches below were performed in PubMed. Due to minor differences in indexing terms between databases, smaller changes were made when the searches were run in the Ovid Embase.

In the common librarian databases Svemed+, Libris, and bibliotek.dk the number of hits were much smaller. It was therefore not necessary to combine the outcome searches with exposure study design searches. Moreover, additional but equivalent searches were done in the Scandinavian languages.

Group 1: Outcome search

The final outcome search terms consisted of an anatomical component combined with a pathologicaldiagnostic component. The anatomical component contained a cervical and a spinal subcomponent.

A. Anatomical component	Search term / search syntax	Number of hits
A1. Cervical items		
A1-1	neck[title/abstract]	97987
A1-2	neck[mesh]	18390
A1-3	neck pain[mesh]	2328
A1-4	neck injuries[mesh]	5051
A1-5	cervical*[title/abstract]	117970
A1-6	cervikal*[title/abstract]	1
A1-comb	A1.1 OR A1.2 OR A1.3 OR A1.4 OR A1.5 OR A1.6	213455
A2. Spinal items		
A2-1	Spine[mesh]	79680
A2-2	Spine[title/abstract]	51408
A2-3	disc[title/abstract]	31776
A2-4	disci[title/abstract]	17
A2-5	discal[title/abstract]	421
A2-6	vertebra*[title/abstract]	88801
A2-7	disk[title/abstract]	17928
A2-8	diski[title/abstract]	0
A2-9	diskal[title/abstract]	69
A2-10	intervertebra*[title/abstract]	9331

A2-11	columna*[title/abstract]	7303
A2-comb	A2-1 to A2-11 combined with OR	215988
A. Combined cervical and spinal items		
(final anatomical component)		
A1	A1-comb AND A2-comb	31192
A2	cervical vertebrae[mesh]	22742
A3	"Zygapophyseal Joint"[mesh]	439
A4	"Atlanto-Axial Joint"[mesh]	1563
A5	"Atlanto-Occipital Joint"[Mesh]	1107
A-comb	A1 to A5 combined with OR	38699

B. Pathological-diagnostic component	Search term / search syntax	Number of hits
B1	"spinal diseases"[MeSH Terms]	72642
B2	"radiculopathy"[MeSH Terms]	2321
B3	"prolapse"[MeSH Terms] AND "spine"[Mesh]	21
B4	"prolapse"[MeSH Terms] AND "spinal diseases"[Mesh]	15
B5	"Spine/abnormalities"[Mesh]	5185
B6	"Spine/pathology"[Mesh]	11814
B7	"Spine/physiopathology"[Mesh]	4589
B8	"osteophyte"[Mesh]	48
B9	"Zygapophyseal Joint/anatomy and histology"[mesh]	221
B10	"Zygapophyseal Joint/pathology"[Mesh]	140
B11	"Zygapophyseal Joint/physiology"[Mesh]	165
B12	"Zygapophyseal Joint/physiopathology"[Mesh]	100
B13	"Atlanto-Axial Joint/anatomy and histology"[mesh]	393
B14	"Atlanto-Axial Joint/pathology"[Mesh]	234
B15	"Atlanto-Axial Joint/physiology"[Mesh]	203
B16	"Atlanto-Axial Joint/physiopathology"[Mesh]	154
B17	"Atlanto-Occipital Joint/anatomy and histology"[mesh]	421
B18	"Atlanto-Occipital Joint/pathology"[Mesh]	125
B19	"Atlanto-Occipital Joint/physiology"[Mesh]	133
B20	"Atlanto-Occipital Joint/physiopathology"[Mesh]	79
B21	spondylos*[title/abstract]	1879
B22	spondylar*	2002
B-comb	B1 to B22 combined with OR	86621
Final outcome search	A-comb AND B-comb	15297

Group 2. Exposure and study type search

The total exposure and study type syntax consisted of a search group concerning occupational and physical exposures, a search group concerning sporting activities and a search group concerning experimental human or animal studies. The search group concerning experimental studies generated

especially large amounts of literature on non-relevant topics. Therefore some search limitations were applied as specified below. A corresponding strategy was employed in Ovid Embase.

Occupational and physical-mechanical exposures	Search term / search syntax	Number of hits
C1	Workplace[mesh]	7586
C2	Workload[mesh]	10022
C3	Work[mesh]	10233
C4	Occupational Exposure[mesh]	36890
C5	Occupational Medicine[mesh]	20919
C6	Occupational Diseases[mesh]	91933
C7	Occupational Health[mesh]	18330
C8	Occupational Groups[mesh]	322618
C9	Industry[mesh]	160204
C10	Employment[mesh]	39260
C11	Occupations[mesh]	22180
C12	work[title/abstract]	352059
C13	working[title/abstract]	102077
C14	worke*[title/abstract]	105158
C15	workload*[title/abstract]	10882
C16	workplace*[title/abstract]	15104
C17	work-relat*[title/abstract]	6275
C18	occupati*[title/abstract]	83287
C19	miner[title/abstract]	477
C20	miners*[title/abstract]	3654
C21	mining[title/abstract]	7143
C22	minework*[title/abstract]	75
C23	rural[All Fields]	80922
C24	dentist*[title/abstract]	42548
C25	lumberjack*[title/abstract]	68
C26	porter*[title/abstract]	1003
C27	coolie*[title/abstract]	7
C28	stevedore*[title/abstract]	19
C29	woodbear*[title/abstract]	1
C30	slaughterhouse work*[title/abstract]	69
C31	docker*[title/abstract]	214
C32	"meat carrier"[title/abstract]	0
C33	"meat carriers"[title/abstract]	0
C34	heavy worker*[title/abstract]	20
C35	bearer*[title/abstract]	1009
C36	"transportation"[mesh]	39326
C37	"aerospace medicine"[mesh]	12105
C38	driving[title/abstract]	25798

Occupational and physical-mechanical exposures (continued)	Search term / search syntax	Number of hits
C39	driver*[title/abstract]	11456
C40	automobile*[title/abstract]	4095
C41	car[title/abstract]	8943
C42	"motor vehicle"[title/abstract]	6319

C89	C1 to C89 combined with OR	
000	heat*	206722
C88	cold*	86234
C87	temperature	444935
C86	weather	321711
C85	draught*	240
C84	draft*	5934
C83	climate	34146
C82	ergonomic*[title/abstract]	4286
C81	"Human Engineering"[Mesh]	32029
C80	decelerat*	7544
C79	accelerat*	112076
C78	stress	353363
C77	non-physiological*	805
C76	nonphysiological*	700
C75	unphysiological*	699
C74	strain*	643430
C73	strenuous	3287
C72	cumulat*	58085
C71	overuse	3288
C70	repetit*	69729
C69	"Cumulative Trauma Disorders"	2639
C68	"material handling"	140
C67	burden	47412
C66	bearing	89620
C65	carried	270732
C64	carry*	99155
C63	load*	162112
C62	lifting	8418
C61	lifted	1693
C60	mechanics	507208
C59	biomechanics	523014
C58	G-force*	306
C57	gravity	23759
C56	Gz	1591
C55	gravitation	11233
C54	vibrat*	34496
C53	vibration[mesh]	13984
C52	"Automobile Driving"[mesh]	10004
C51	helicopter*[title/abstract]	1767
C50	fighter*[title/abstract]	850
C49	pilot*[title/abstract]	55234
C48	aircraft*[title/abstract]	3913
C47	airplane*[title/abstract]	729
C46	aeroplane*[title/abstract]	109
C45	flight*[title/abstract]	24984
C44	aviat*[title/abstract]	3443
C43	"motor vehicles"[title/abstract]	1059

Sporting activities	Search term / search syntax	Number of hits
D1	sports[mesh]	74764
D2	"sports medicine"[mesh]	8039
D3	"athletic injuries"[mesh]	15817
D4	barotrauma[mesh]	5438
D5	sport*[title/abstract]	25807
D6	jumper*[title/abstract]	451
D7	gymnast*[title/abstract]	1767
D8	athlet*[title/abstract]	22392
D9	parachute*[title/abstract]	466
D10	soccer*[title/abstract]	2087
D11	football*[title/abstract]	2830
D12	rugby*[title/abstract]	885
D13	swimm*[title/abstract]	12816
D14	diver[title/abstract]	619
D15	diving[title/abstract]	3576
D16	jockey*[title/abstract]	178
D17	riding[title/abstract]	2025
D-komb	D1 to D17 combined with OR	118084
Experimental studies		
E1	"anatomic models"[Text Word]	9261
E2	"models, anatomic"[MeSH Terms]	10671
E3	models, anatomic[Text Word]	9231
E4	cadaver*[title/abstract]	30605
E5	cadaver[mesh]	28431
 E6	autopsy	67348
E7	"in vitro"[Publication Type]	349023
E8	"in vitro"[title/abstract]	650909
E9	"in vivo"[title/abstract]	448755
E10	"dissection"[MeSH Terms]	5702
E11	dissec*[title/abstract]	79347
E12	specimen*[title/abstract]	194807
E13	experiment*[title/abstract]	1013984
E14	Human Experimentation[MeSH Terms]	10079
E15	Humans[Mesh]	10280879
E16	"animals"[MeSH Terms:noexp]	4233908
E17	"Models, animal"[Mesh]	294861
E18	animal*[title/abstract]	599932
E19	porcine[title/abstract]	46231
E20	swine*[title/abstract]	23216
E21	pig[title/abstract]	96951
E22	pigs[title/abstract]	74389
E23	rat[title/abstract]	650237
E24	rats[title/abstract]	558363
E25	goat*[title/abstract]	19228
E26	monkey*[title/abstract]	67050
E27	sheep[title/abstract]	62560
E28	rabbit*[title/abstract]	203046
E29	canin*[title/abstract]	56192
	· ····································	1

	0
4	
	7

Experimental studies (continued)	Search term / search syntax	Number of hits
E30	mouse[title/abstract]	324173
E31	mice[title/abstract]	431273
E32	caprine[title/abstract]	1803
E33	dog[title/abstract]	65016
E34	dogs[title/abstract]	109623
E35	cow[title/abstract]	12651
E36	cows[title/abstract]	23200
E-comb	E1 to E36 combined with OR	13999909
Limitations		
(applied on experimental studies)		
Limitations as regards disease, specialty etc.		
F1	NOT <u>Dislocations[MeSH Terms]</u>	-
F2	NOT "Surgical Fixation Devices" [MeSH Terms]	-
F3	NOT "Prostheses and Implants" [MeSH Terms]	-
F4	NOT Spondylarthropathies[MeSH Terms]	-
F5	NOT "Fractures, Bone" [MeSH Terms]	-
F6	NOT "Congenital, Hereditary, and Neonatal Diseases and	-
	Abnormalities"[MeSH Terms]	
F7	NOT "Hyperostosis, Diffuse Idiopathic Skeletal" [MeSH Terms]	-
F8	NOT Vertebral Artery Dissection[MeSH Terms]	-
F9	NOT therapeutics[mesh]	-
F10	NOT "surgical procedures, operative"[MeSH Terms]	-
F11	NOT "specialties, surgical"[MeSH Terms]	-
F12	NOT "whiplash injuries"[MeSH Terms]	-
F13	NOT "Bone Diseases, Metabolic"[MeSH Terms]	-
F14	NOT "Spinal Cord Injuries" [MeSH Terms]	-
F15	NOT Paleontology[MeSH Terms]	-
F16	NOT "Toxic Actions" [MeSH Terms]	-
F17	NOT "Neurodegenerative Diseases"[MeSH Terms]	-
F-Comb	F1 to F17 combined with AND	-
Limitations as regards language		
G1	English[lang]	-
G2	German[lang]	•
G3	Danish[lang]	•
G4	Norwegian[lang]	•
G5	Swedish[lang]	•
G-comb	G1 to G5 combined with OR	

Limitations (continued)	Search term / search syntax	Number of hits
Limitations as regards study design and publication type		
H1	Clinical Trial[ptyp]	-
H2	Meta-Analysis[ptyp]	-
H3	Randomized Controlled Trial[ptyp]	-
H4	Review[ptyp]	-
H5	Classical Article[ptyp]	-
H6	Clinical Trial, Phase I[ptyp]	-
H7	Clinical Trial, Phase II[ptyp]	-
H8	Clinical Trial, Phase III[ptyp]	-
H9	Clinical Trial, Phase IV[ptyp]	-
H10	Comment[ptyp]	-
H11	Comparative Study[ptyp]	-
H12	Controlled Clinical Trial[ptyp]	-
H13	Corrected and Republished Article[ptyp]	-
H14	Duplicate Publication[ptyp]	-
H15	Evaluation Studies[ptyp]	-
H16	Historical Article[ptyp]	-
H17	Journal Article[ptyp]	-
H18	Published Erratum[ptyp]	-
H19	Scientific Integrity Review[ptyp]	-
H20	Twin Study[ptyp]	-
H21	Validation Studies[ptyp]	-
H-comb	H1 to H21 combined with OR	-
Final search as regards experimental studies		
l-comb	E-comb AND F-comb AND G-comb AND H-comb	3710426

Final combined searches (Group 1 and Group 2 in combination)

J1	C-comb AND Final outcome search	2040
J2	D-comb AND Final outcome search	244
J3	I-comb AND Final outcome search	478
Final search	J1 OR J2 OR J3	2471

In addition to the literature searches addressing physical risk factors of CDSC described above, a number of supplementary searches, addressing the literature on non-physical potential risk factors were performed. In these searches, the aforementioned final outcome search was combined (using the Boolean operator "AND") with search terms including *risk*, *causality*, *epidemiology*, *aetiology*, *physiopathology* and *pathology*, *tobacco*, *tobacco* use disorder, smoking, cigar*, Body Weight, obes*, Nutrition Disorders, life-style, Biometry, Disease susceptibility, recurrence, prognosis, disease progression and rheumatoid arthritis/complications.

Appendix 2

CHECKLIST FOR NECK-STUDIES

1. First author	
2. Year of publication	
Basic criteria fulfilled?	a) Age issues (narrow band, report by subgroups or statistical control)
	Yes No
	b) Imaging employed: X-ray CT MRI
3. Design	
	control 🗆 register 🗆
4. Country of study/ethnicity of study population	
5. Type of study population	
6. Age description	
7. Size study group N	
Response rate %	
Response rates follow up %	
8. Size <i>control group</i> N	
Response rate %	
Response rates follow up %	
9. Definitions of degeneration (including severity)	
9. Definitions of degeneration (including severity)	
10. Definition of potential risk factors (including dose in amount or	
duration)	
11. Summary of results in relation to degeneration	

(summary of results continued)	
12. Comments	
12. Comments	
1	
1	
1	
1	
1	
1	

Quality score	Yes clearly = 2
	Yes reasonably = 1
	Not really or no = 0
	Not applicable (NA)
Sampling bias	Score:
<i>E.g.</i> data source (target population) well described; sampling method suitable; matching satisfactory; size of study	
sample substantial; response rates sufficiently high; comparison of responders and non-responders reveals no major	
differences; description of study sample indicates no anomalies	
Outcome variables	Score:
<i>E.g.</i> clear definition of variables; method of measurement has previously been validated; method of measurement has	
previously been validated and found acceptable; method of measurement is validated in present study; method of	
measurement is investigated for inter-examiner reliability; method of measurement is investigated for intra-examiner	
reliability; method of measurement is investigated for repeatability	
Potential predictor variables	Score:
E.g. clear definition of each relevant predictor variable; method of measurement has previously been validated;	
method of measurement has previously been validated and found acceptable; method of measurement is validated in	
present study; method of measurement is investigated for inter-examiner reliability; method of measurement is	
investigated for intra-examiner reliability; method of measurement is investigated for repeatability	
Information bias	Score:
<i>E.g.</i> image interpretation done blindly when needed?	
Data analysis	Score:
<i>E.g.</i> was the study sample sufficiently large for all analyses? (N=50 for one variable, + 10? for each additional	
variable); were the variables utilized sufficiently (e.g. dose response)? Was the choice of confounders/modifiers	
explained or tested for? Were all the results reported (not only the positive ones)? Was statistical significance tested or	
confidence intervals reported, where relevant?	

Appendix 3

Criteria for grading evidence of causality

Criteria for assessing the degree of evidence of a causal association between an exposure to a specific risk factor and a specific outcome, as specified by the Scientific Committee of the Danish Society of Occupational and Environmental Medicine.

Strong evidence of a causal association [+++]

A causal relationship is *very likely*. A positive relationship between exposure to the risk factor and the outcome has been observed in several epidemiological studies. It can be ruled out with reasonable confidence that this relationship is explained by chance, bias or confounding.

Moderate evidence of a causal association [++]

A causal relationship is likely. A positive relationship between exposure to the risk factor and the outcome has been observed in several epidemiological studies. It cannot be ruled out with reasonable confidence that this relationship can be explained by chance, bias or confounding, although this is not a very likely explanation.

Limited evidence of a causal association [+]

A casual relationship is *possible*. A positive relationship between exposure to the risk factor and the outcome has been observed in several epidemiological studies. It is not unlikely that this relationship can be explained by chance, bias or confounding.

Insufficient evidence of a causal association [0]

The available studies are of insufficient quality, consistency, or statistical power to permit a conclusion regarding the presence or absence of a causal association.

Evidence suggesting lack of a causal association [–]

Several studies of sufficient quality, consistency and statistical power indicate that the specific risk factor is not causally related to the specific outcome.

Comments

The classification does not include a category for which a causal relation is considered as established beyond any doubt. The key criterion is the epidemiological evidence. The likelihood that chance, bias and confounding may explain observed associations are criteria that encompass criteria such as consistency, number of "high quality" studies, types of design etc.

Biological plausibility and contributory information may add to the evidence of causal association.

Evidence tables

General or clinical populations

Author	Population	Study	Sample	Type of degeneration	Results	Quality
Year		design	sizes			score
Country						
			Resp.			Blind
			rate %			assessment
						Yes/No
Bremner	General population	Cross-	536	X-ray	More common and more	10/10
1968	35-64 years old	sectional	89 %	Uncovertebral arthrosis	severe disc degeneration in	
Jamaica				"Disc degeneration"	Jamaicans (65 %) than in	Yes
				Standard Atlas of	Europeans (39 %).	
				Radiographs		
Ernst	Volunteers	Cross-	30	MRI-scan	Degenerative changes	5/10
2005		sectional	? %	Anular tear	frequently found in an	
Belgium				Bulging and protrusion	asymptomatic population.	No
				according to Jensen 1994	Positive age association.	
				Reduced disc height		
				Disc intensity		
Hartwig	Patients seeking a	Retrospec	153	X-ray	No correlation between	5/10
2003	private clinic for	tive	with	Reduced disc height	cervical degenerative	
Germany	workers		work	Osteophytes	changes and lumbar load.	No
	compensation		stress	Grading according to	Positive age association.	
			on	Kellgren		
			<u>lumbar</u>			

			spine and 333			
			without			
			? %			
Humphreys	Symptomatic and	Cross-	43	MRI-scan	Age positively associated	4/10
1998	asymptomatic	sectional	? %	Curvature deviance	with facet hypertrophy and	
USA	volunteers			Reduced disc height	foraminal narrowing, but	No
				Spinal canal diameter	not with ratio cord/canal.	
					Symptomatic persons have	
					narrower foramen.	
Irvine	General	Cross-	490	X-ray	Association with age and	10/10
1965	population.	sectional		Reduced disc height	gender. 20-29 years: 13 %	
UK	Sample drawn		94.5 %	Osteophytes	in \Im , 5 % in \Im .	Yes
	randomly from				60-69 years: 98 % in ♂, 91	
	GP's register				% in ♀.	
					More prevalent in miners	
					with heavy work, and in	
					men with a history of head	
					trauma	
Kopacz	Patients X-rayed	Descripti	454	X-ray	5.2 % had 2-4 mm anterior	6/8
1999	for other reasons	ve	67 %	Spondylolisthesis	spondylolisthesis at one	
USA	than neck pain		174		level. No association with	No
			selected		age.	
			for			
			study			

Lawrence	3 general	Cross-	3947	X-ray	Association with age, but	7/10
1969	populations in UK	sectional		Reduced disc height	not clearly with occupa-	
UK and	and 1 in Rhondda		86 %	Standard Atlas of	tion. Overall prevalence 42	Yes
Rhondda	above 14 years of			Radiographs	% in \Im and 37 % in \Im .	
	age				Prevalence 3 % at 15	
					years, 100 % at 65. More	
					severe changes and more	
					discs involved in men.	
Lee	Patients with	Retro-	150	X-ray C5 only	Endplate sclerosis	10/10
2001	cervical X-rays	spective	? %	Sclerosis of the vertebral	increases with age. No	
Hong Kong		study		endplates	correlation with neck pain.	Yes
Lehto	Four asympto-	Cross-	89	MRI-scan	Degenerative changes are	7/10
1994	matic age groups.	sectional	? %	Disc intensity	common in asymptomatics	
Finland	Origin not stated			Graded according to Tertti	after 30 years and	No, but 2/3
	(1. schoolchildren,				increases with age. No	radiologists
	2. medical				gender difference.	must agree
	students,					
	3. doctors and					
	sedentary workers,					
	4. not described)					
Matsumoto	Asymptomatic	Cross-	497	MRI-scan	Degeneration increases	9/10
1998	volunteers with a	sectional	? %	Reduced disc height	linearly with age, is seen in	
Japan	variety of			Disc bulging	12-17 % of discs in the	Yes
	occupations			Foraminal narrowing	twenties and 86-89 %	
				Disc intensity	above 60 years. No gender	
				Other rating scale	differences except that	

					posterior disc protrusion is	
					more common in females.	
Obisesan	Women requesting	Cross-	400	X-ray	Degeneration commences	5/10
1999	cervical X-rays	sectional	? %	Modified Grading according	in the fourth decade and	
Nigeria	but not for trauma			to Kellgren	progresses with age.	No
Siivola	Randomly selected	Cross-	15	MRI-scan	MRI-scan findings	8/10
2002	high school	sectional	cases	Curvature deviance	common. No clear	
Finland	students	study as	with	Disc intensity	correlation with pain.	Yes
		part of a	neck	Anular tear		
		prospec-	and	Disc bulging		
		tive study	shoulde	Disc herniation		
			r pain	Uncovertebral arthrosis		
			and 16	Other rating scale		
			without			
			? %			
Zapletal	Patients referred	Retrospec	355	X-ray	No abnormalities before	8/10
1997	for radiographs of	tive	NA	Uncovertebral arthrosis	sixth decade, linear	
Holland	nasal sinuses			Narrowing of atlantoaxial	progression with age	No
				joint space,	thereafter: 5.4 % in the	
				articular osteophytes and	sixth decade, 18.2 % in the	
				subchondral sclerosis	ninth.	

Various occupations

Author	Population	Controls	Study	Sample sizes	Exposure	Type of	Results	Quality
Year			design		measure	degeneration		score
Country				Response				
				rates %				Blind
								assessment
								(Yes/No)
Bartsch	Professional military	Non-divers	Cross-	24 divers	Diving years	MRI-scan	No increased	6/10
2001	divers		sectional	? %		Disc bulging	prevalence of disc	
Germany						Bulging and	protrusion in	Yes
				24 controls		protrusion	divers.	
				? %		according to		
						Jensen 1994		
Beck	Miners using	People not using	Cross-	500 miners	Use of air-	X-ray	No differences	1/10
1951	compressed air tools	air-tools: heavy	sectional	? %	tools yes/no			
Germany		workers, "brain				No definitions		No
		workers" and		500 controls				
		women (!)		? %				
Hult	Forest workers and	Internal	Cross-	114 forest	Job title	X-ray	Findings more	6/10
1954	industrial workers		sectional	workers		Reduced disc	frequent and	
Sweden				? %		height	earlier in forest	No
				163 industrial		Osteophytes	workers. Positive	

				workers		Other rating scale	age association.	
				? %				
Hult	Only men: shop	Internal	Cross-	666 with	Heavy work	X-ray	Changes develop	6/10
1954	assistants, light		sectional	heavy jobs	or light work	Reduced disc	earlier in heavy	
Sweden	sedentary workers,					height	work than in light	No
	light industry			%?		Osteophytes	work, but no	
	workers, stevedores,					Other rating scale	difference for	
	and workers in heavy			471 with light			pronounced	
	food industry,			jobs			degeneration.	
	construction, and						Positive age	
	heavy metal industry			? %			association	
							(prevalence 5 %	
							by 25-29, 90 % by	
							59).	
Irvine	General population.	Internal	Cross-	490	Job with	X-ray	More prevalent in	10/10
1965	Sample drawn		sectional		more than 10	Reduced disc	miners with heavy	
UK	randomly from GP's			94.5 %	years	height	work, and in men	Yes
	register				experience.	Osteophytes	with a history of	
							head trauma.	
					Heaviness of		Association with	
					work.		age and gender.	
					Previous			
					head trauma			
Jensen	Nationwide in-	Internal:	Register	89,146 male	Professional	Disc herniation	Association	6/8
1996	hospital register: All	Type of driving.		drivers	driving		between frequency	

Denmark	professional drivers				yes/no	Hospital diagnosis	of hospitalization	NA
	treated for prolapsed	Comparison to					for herniation and	
	cervical disc	all economically			Types of		professional	
		active people in			work		driving.	
		Denmark					Drivers with heavy	
							lifting had lower	
							ratio (137) than	
							those without	
							(184).	
Jung	Patients referred to	Internal	Cross-	510 males	Job title	X-ray	No association	3/10
1975	an X-ray department		sectional			Reduced disc	with work. Boxing	
Germany	for other reasons than			? %	Type of	height	increases	No
	neck pain: office				sport	Osteophytes	frequency.	
	workers, drivers, ma-					Uncovertebral	Positive age	
	chine workers, heavy					arthrosis	association.	
	workers					Sclerosis of the		
						vertebral endplates		
						Curvature		
						deviance		
Katevuo	Dentists	Farmers	Cross-	119 dentists	Job title	X-ray	Changes in 52 %	7/10
1985			sectional	82 %		Reduced disc	of dentists and 19	
Finland						height	% of farmers.	Yes
				192 farmers		Sclerosis of the	Positive age	
				? %		vertebral endplates	association.	
						Osteophytes		
L						Uncovertebral		

						arthrosis		
Kellgren	Underground miners,	Internal	Cross-	84 miners	Job titles	X-ray	No significant	6/10
1952	other manual		sectional	89 %		Reduced disc	differences	
UK	workers, office			45 other		height	between	Yes
	workers			manual		Osteophytes	occupational	
				workers		Sclerosis of the	groups.	
				95 %		vertebral endplates		
				42 office		Vertebral body		
				workers		shape		
				89 %		Mobility		
						Other rating scale		
Kellgren	Random sample of	Internal	Cross-	481?	Job titles	X-ray	Prevalence in men	5/10
1958	55-64 years old		sectional	79 %?		Reduced disc	83 %, in women	
UK						height	72 %. CDSC more	No
						Osteophytes	pronounced in	
						Collins rating scale	men. Cotton wor-	
							kers a little more	
							CDSC than miners	
							and "others".	
Lawrence	Employees at cotton	Non-manual	Cross-	Unclear	Various tasks	X-ray	Less changes in	8/10
1961	mills \geq 45 years of	workers	sectional	197?	at a mill	Grading according	cotton mill wor-	
UK	age			87 %?		to Kellgren	kers than in con-	Yes
							trols. Positive age	
	Previously studied			345 (?) added			association.	
	random sample			from a			Females had more	
	added			previous			discs affected.	

				study				
				? %				
Lawrence	Three general	Internal	Cross-	3947	Job titles	X-ray	No clear	7/10
1969	populations in UK		sectional			Reduced disc	association with	
UK and	and one in Rhondda			86 %		height	occupation al-	Yes
Rhondda	above 14 years of age					Standard Atlas of	though most se-	
						Radiographs	vere forms were	
							seen in manual	
							workers. Asso-	
							ciation with age.	
Mustajoki	Parachutists	Volunteers	Cross-	50 parachu-	Number of	X-ray	Association with	7/10
1978			sectional	tists	jumps	Reduced disc	parachuting (40 %	
Finland				? %		height	versus controls 20	Yes
						Osteophytes	%). Dose-response	
				50 volunteers		Uncovertebral	relation. Positive	
				? %		arthrosis	age association.	
Rellan	Sedentary workers,	Internal	Cross-	250, fifty in	Heaviness of	X-ray	More CDSC in	4/10
1969	housewives, modera-		sectional	each group	work;	Reduced disc	heavy manual	
India	tely heavy manual			? %	rickshaw	height	workers and	No
	workers, heavy				driving	Osteophytes	rickshaw drivers	
	manual workers,						than in sedentary	
	scooter rickshaw						workers and	
	drivers						housewives.	
Schröter	Patients in an occu-	Internal	Retro-	100, 113, 84	Job title	X-ray	Dentists same	3/9
1959	pational medical		spective	and 90		"Spondylosis" or	frequency as	

Germany	clinic: carriers, office			respectively.		"osteochondrosis"	others, but more	No
	workers, miners and						severe changes.	
	dentists			NA				
Takamiya	Grape growers	Eggplant	Cross-	177 grape	Working	X-ray	Work with neck	7/10
2006		growers	sectional	growers	years	Osteophytes	extension (grape	
Japan				? %		Reduced disc	growing) asso-	Yes
						height	ciated with dege-	
				191 eggplant		Jäger's scoring	nerative changes.	
				growers		system	Positive age	
				? %			association.	
Tsirikos	Jockeys	?	Prospec-	32 jockeys	Professional	X-ray	Claims higher	3/10
2001			tive	? %	horse riding	Other rating scale	incidence in	
Greece				35 controls	yes/no		jockeys.	No
				? %				
Zejda	Coalminers with	Blue collar	Cross-	685 miners	Duration of	X-ray	Age the only	6/10
2003	hand-arm vibration	surface workers	sectional	? %	employment	Reduced disc	explanatory	
Poland	disease	with non-				height	variable.	No
		specific neck		68 controls		Osteophytes		
		complaints		? %				

Âlund	Former steel work	White collar	Cross-	15 grinders	Heaviness of	X-ray	More foraminal	6/10
1994	grinders with neck	workers	sectional	? %	work	Reduced disc	narrowing in the	
Sweden	symptoms					height	grinders because	Yes
		Patients with		15 office		Spondylolisthesis	of osteophytes, but	
		light work X-		workers		Curvature	disc height the	
		rayed because		? %		deviance	same.	
		of minor neck				Foraminal		
		or head trauma		15 patients		narrowing		
		or neck		? %		Uncovertebral		
		complaints				arthrosis		
						Other rating scale		

Pilots

Author	Population	Controls	Study	Sample sizes	Exposure	Type of degene-	Results	Quality
Year			design		measure	ration		score
Country				Response				
				Rates %				Blind
								assessment
								(Yes/No)
Aydog	Jet pilots	Office	Cross-	Exposed:	Type of	X-ray	Helicopter pilots and tall	7/10
2004	Transport pilots	workers	sectional	732	aircraft.	Sclerosis of the	jet pilots had more	
Turkey	Helicopter	Traffic		? %	Total	vertebral	degenerative changes, but	No, but 2
	pilots	control			flying	endplates	the helicopter pilots were	radiologists and
		workers		Controls: 202	hours	Curvature	2-3 yrs older and had	a 3rd if
				? %		deviance	more flying hours than the	disagreement
						Reduced disc	rest. Positive age	
						height	association.	
						Vertebral body		
						shape		
						Spondylolisthesis		
						Osteophytes		
						Disc herniation		
Hämäläinen	Pilots	Ground	Cross-	12 exposed	Pilot	MRI-scan	C3/C4 more degenerated	6/10
1993		personnel in	sectional	? %	yes/no	Disc bulging	in pilots, not the other	
Finland		the air force		12 controls		Other rating	discs	Yes

				(one later		scale		
				excluded				
				because of				
				anatomical				
				variation)				
				?%				
Hendriksen	Pilots	Student pilots	Cross-	188 exposed	Flying	X-ray	No consistent associations	8/10
1999		1	sectional	?%	hours	Osteophytes		
Holland						Curvature		Yes
				128 controls		deviance		
				?%		Reduced disc		
				. /0		height?		
Landau	Jet pilots	Internal	Cross-	10 in each	Type of	MRI-scan	Degenerative findings not	6/10
	-	Internal			. –			0/10
2006	Transport pilots		sectional	group	aircraft,	Disc herniation	associated to air craft type,	
Israel	Helicopter				total flight	Foraminal	but to age. Dose-response	Yes
	pilots				hours and	narrowing	not reported.	
					current	Osteophytes		
					weekly	Disc bulging		
					hours.	Other rating		
						scale		
Mason	All army		Register	Not reported	Registrated	Disc herniation	Rate increasing over time	6/8
1996	aviators		1987-92		as an		for unknown reasons	
USA					aviator			NA
Petrén-	Asymptomatic	Volunteering	Cross-	Exposed:	Flying	MRI-scan	More degenerative	6/10
Mallmin	experienced	non-pilots	sectional	16	experience	Disc bulging	changes in experienced	
1999	pilots and			? %		Osteophytes	pilots than in controls	Yes

Sweden	young pilots					Foraminal		
				Controls:		narrowing		
				13		Uncovertebral		
				? %		arthrosis		
						Reduced disc		
						height		
						Disc intensity		
						Other rating		
						scale		
Petrén-	Pilots	Volunteering	Follow-	Exposed:	Pilot	MRI-scan	Fighter pilots at increased	7/10
Mallmin		non-pilots	up	14	yes/no	Disc bulging	risk in young age, but the	
2001				87 %		Osteophytes	difference diminishes with	Yes
Sweden						Foraminal	age	
				Controls:		narrowing		
				14		Reduced disc		
				93 %		height		
						Disc intensity		
						Other rating		
						scale		

Head carriers

Author	Population	Controls	Study	Sample	Exposure	Type of	Results	Quality
Year			design	sizes	measure	degeneration		score
Country								
				Response				Blind
				rates %				assessment
								(Yes/No)
Echarri	Women carrying	Women not	Cross-	72	Duration of	X-ray	More degenerative	4/10
2002	wood on the head	with the	sectional	exposed	work	Reduced disc	changes in younger	
Congo	during \geq 12 years	same		? %		height	woodbearers. No gender	No
		occupation				Vertebral body	difference.	
				44		height		
				controls		Spinal canal		
				? %		diameter		
						Spondylolisthesis		
						Osteophytes		
						Curvature		
						deviance		
						Grading		
						according to		
						Kellgren		
Echarri	Two groups of	Controls:	Cross-	Exposed	Duration of	X-ray	Load bearing on the	3/10

2005	head carriers:	Building and	sectional	group 1:	work	Osteophytes	head associated to more	
Congo	1. carrying heavy	industry		28		Spondylolisthesis	degenerative signs,	No
	loads	workers		72 %		Vertebral body	particularly heavy loads.	
	2. carrying			Exposed		shape	Positive age association.	
	bundles			group 2:		Curvature		
				33		deviance		
				72 %		Grading		
				Controls:		according to		
				36		Kellgren		
				86 %				
Jäger	Head porters	Non-head	Cross-	35	Duration of	X-ray	Carriers more frequently	8/10
1997	attending	porters.	sectional	? %	work and	Reduced disc	degenerative changes	
Sierra Leone	clinic for diseases	No past history			average	height	(88.6 %) than controls	Yes
(same	unrelated to neck.	of		35	weight of	Osteophytes	(22.9 %). Positive dose-	
material as	No past history of	neck injury or		? %	load.	Other rating scale	response relation.	
Mehring	neck injury or	arthritis, no			Heavy and		Positive age association.	
1998?)	arthritis, no pain	pain			light loads		No gender differences.	
	or stiffness at time	or stiffness at						
	of study.	time of study.						
Joosab	Victims of assault	Victims of	Cross-	20	Load carrying	X-ray	No association with	1/10
1994	and road accidents	assault and	sectional	exposed	yes/no	Curvature	head-carrying, but	
Zimbabwe	who during work	road accidents		? %		deviance	positively with age.	No
	carried	not carrying		25		Spinal canal		
	loads on the head	loads on the		controls		diameter		
		head		? %		Reduced disc		
						height		

Mahbub	Random sample of	NA	Cross-	98	Duration of	X-ray	Positive association	4/10
2006	coolies who had		sectional	98 %	occupation.	Osteophytes	with duration of occu-	
Bangladesh	worked for >1				Weight of	Reduced disc	pation, weight of loads	No
	year and had no				loads.	height	carried on the head and	
	history of neck						with age.	
	injury							
Mehring	Professional head	Matched non-	Retro-	35	Weight-time-	X-ray	Head carriers more	6/10
1998	carriers treated for	carriers	spective	exposed	dose	Reduced disc	degenerative changes	
Sierra Leone	other reasons than			? %		height	than non-carriers.	Yes
	neck trouble					Osteophytes	Positive age association.	(probably
				35		Other rating scale		same mate-
				controls				rial as Jäger
				? %				1997)

Sports

Author	Population	Controls	Study	Sample sizes	Exposure	Type of	Results	Quality score
Year			design		measure	degene-		
Country				Response		ration		Blind assess-
				rates %				ment
								(Yes/No)
Berge	Rugby players	Non-playing	Cross-	47 exposed	Rugby	MRI-scan	Rugby players more	4/10
1999		healthy	sectional	? %	yes/no	Modic	changes than controls.	
France		volunteers				changes	Positive age	No
		without history		40 controls		Curvature	association.	
		of neck		? %		deviance		
		problems				Spinal canal		
						diameter		
						Vertebral		
						body height		
						Vertebral		
						body shape		
						Sclerosis of		
						the		
						vertebral		
						endplates		
						Osteophytes		

Jung	Patients referred to an	Internal	Cross-	510 males	Job title	X-ray	No association with	3/10
1975	X-ray department for		sectional			Reduced	work. Boxers more	
Germany	other reasons than			? %	Type of	disc height	changes. Positive age	No
	neck pain: office				sport	Osteophytes	association.	
	workers, drivers,					Uncoverteb		
	machine workers,					ral arthrosis		
	heavy workers					Sclerosis of		
						the		
						vertebral		
						endplates		
						Curvature		
						deviance		
Kartal	1: Active soccer	Age matched	Cross-	Exposed:	Active	X-ray	A tendency towards	6/10
2004	players < 30 years of	university	sectional	1:15	soccer	MRI-scan	early changes in	
Turkey	age	students and		? %	playing at	Spondylolis	soccer players.	Yes
	2: Veterans >30 years	staff		2:15	least 10	thesis	Positive age	
	of age who had played			? %	years	Curvature	association.	
	≥ 10 years			Controls:		deviance		
				1:13		Uncoverteb		
				? %		ral arthrosis		
				2:15		Spinal canal		
				? %		diameter		
						Ankylosis		
Mundt	Patients with neck	Patients without	Case-	68 cases	Type of	Disc	No association	5/8
1993	pain <1 yr with radio-	neck pain in the	control	? %	sport	herniation	between sports and	
USA	logical evidence of	same age range		63 controls		X-ray	herniation. No asso-	No

	discal hernia			? %		CT-scan	ciation with age.	
						MRI-scan		
Reul	Amateur SCUBA-	Non-diving	Cross-	52 exposed	Diving	MRI-scan	More disc	7/10
1995	divers	sportspeople	sectional	? %	more than 4	Disc	bulging/herniated	
Germany				50 controls	years	bulging	discs in divers (46)	Yes
				? %		Disc	than in controls (13)	
						herniation		
Scher	Volunteer asympto-	Persons referred	Cross-	150 exposed	Rugby	X-ray	Higher frequency of	4/10
1990	matic rugby players	for X-ray (of	sectional	? %	yes/no	Reduced	changes in rugby	
South	selected to fit into one	what?) but				disc height	players. Positive age	No
Africa	of three age groups	without neck or		150 controls		Sclerosis of	association.	
		arm pain		? %		the		
						vertebral		
						endplates		
						Osteophytes		
						Uncoverteb		
						ral arthrosis		
Sortland	Former soccer players	Working people	Cross-	43 exposed	Soccer	X-ray	Earlier onset and	5/10
1982	at the national	without history	sectional	? %	yes/no	Osteophytes	higher frequency in	
Norway	Norwegian team	of neck trauma		43 controls		Reduced	soccer players.	No
				? %	???	disc height?		
						Other rating		
						scale		

Abnormal movements

Author	Population	Controls	Study	Sample sizes	Exposure	Type of	Results	Quality
Year			design		measure	degeneration		score
Country				Response				
				rates %				Blind
								assessment
								(Yes/No)
Chawda	Patients with	Internal	Descriptive	34 conse-	Duration and	CT-scan	Arthrosis predominantly found	8/10
2000	spasmodic			cutive	severity of	Uncovertebral	on the side of the main direction	
UK	torticollis referred				torticollis	arthrosis	of the head turns, and mainly at	No
	for surgery			? %			level C2/C3 and C3/C4.	
Ebara	Patients with	None	Descriptive	57	Athetoid	X-ray	Segmental instability "proved to	4/10
1989	athetoid cerebral				movements	Spondylolisthesis	be common". "Whether	
Japan	palsy			? %		Rotation	instability leads to premature	No
						Curvature	spondylosis still remains	
						deviance	unsolved."	
Kojima	Wheelchair users	Whiplash	Case-control	87 cases	Duration of	X-ray	Spondylosis more frequent in	3/10
1997	because of spinal	injured		? %	use of	"Spondylosis"	paraplegics. Positive age	
Japan	cord damage				wheelchair		association.	No
				200 controls				
				? %				

Animal experiments

Author	Experimental	Controls	Experiment	Sham	Type of	Results	Quality
Year	animals			experi-	degenera		score
Country				ment	tion		
				Yes/No			
Baogan	10 rabbits	10 rabbits	Posterior paravertebral	Yes	Histologi	Osteophytes arise from proliferation	8/10
2000			muscles detached and		c	of articular cartilage through	
China			posterior ligaments resected.		examinati	endochondral ossification.	
			Rabbits killed 3 and 8		on	Operated animals showed more	
			months postoperatively.			degenerative changes, and after 3	
						months the findings in operated	
						animals were similar to those in	
						controls after 8 months.	
Kimura	25 transgenic	20 non-	Killed at intervals up to the	NA	X-ray	Disc degeneration more	7/10
1996	mice with	transgenic	age of 26 months.		Reduced	advanced in transgenic mice.	
Japan	collagen defect	mice			disc		
					height		
					Osteophyt		
					es		
					Spondylol		
					isthesis		
					Histologi		

					с		
					examinati		
					on		
					Other		
					rating		
					scale		
Mason 1984	28 mice from a	28 mice	Both groups killed at ages of	NA	Histologi	In kyphotic mice degenerative	6/10
UK	strain with	without	50 and 252 days,		с	changes were found between C5 and	
	heritable	heritable	respectively.		examinati	T3 with individual variation.	
	kyphosis	kyphosis			on		
					Various		
					changes		
Miyamoto	30 ICR-strain	28 normals	Posterior paravertebral	No	X-ray	Radiologically degenerative	8/10
1991	mice		muscles detached, spinous		Reduced	changes were seen in all operated	
Japan			processes with ligaments		disc	animals 12 months after operation,	
			resected, 1/3 killed after 2, 6		height	but not before and not in controls.	
			and 12 months, respectively.		Osteophyt	Histological changes appeared	
					es	already 2 months postoperatively.	
					Spondylol		
					isthesis		
					Histologi		
					c		
					examinati		
					on		
					Other		
					rating		

					scale		
Wada 1992	10 female rabbits	10 rabbits	Electrodes implanted	Various	X-ray	In the most exposed group (200.000	7/10
Japan	ipan unilate		unilaterally in trapezius	doses	Histologi	cycles during 2 months) degenerative	
			muscle. Cyclic stimulation		c	changes were shown to be more	
			resulting in muscle contrac-		examinati	frequent and more pronounced	
			tions during three periods up		on	histologically, but no changes visible	
			to three months.		Vernon-	radiologically.	
					Roberts		
					grading		
					system		
Wang 2006	30 rats	30 rats	Posterior paravertebral	Yes	Histologi	Progressive degenerative changes	10/10
China			muscles detached, ligaments		c	with inflammation from 3 months on	
			excised. Killed at intervals.		examinati	in the experimental group.	
					on		
					Bioche-		
					mical		
					analyses		

Twin studies

Author	Population	Type of twin	Sample sizes	Types of	Results	Quality score
Year		study		degeneration		
Country			MZ			Blind assessment
			DZ			(Yes/No)
Palmer	Twins without	Convenience	23 pairs/200	X-ray	"Twins look alike". Results	0/10
1984	cervical spine	MZ-DZ study	who had a co-	Reduced disc	reported in a narrative	
USA	complaints		twin living near	height	fashion.	No
			by	Osteophytes		
				Spondylolisthe		
				sis		
				Vertebral body		
				shape		
Sambrook	Responders to	Twin control	86 MZ pairs	MRI-scan	About 2/3 of the variability	9/10
1999	advertisements with	study	77 DZ pairs	Reduced disc	of cervical degeneration is	
UK and	blinded purpose			height	genetically determined.	Yes
Australia				Disc intensity		
				Osteophytes		
				Standard Atlas		
				of Radiographs		
				1		

	Other rating	
	scale	

Smoking

Author	Population	Controls	Study	Sample	Exposure	Type of	Results	Quality
Year			design	sizes	measure	degenera-		score
Country						tion		
				Response				Blind
				rates %				assessment
								(Yes/No)
An	Consecutive	Other medi-	Case-	42 cases	Non-	Operation	More smokers	6/10
1994	patients with pro-	cal or surgi-	control	? %	smokers,	X-ray	among operated	
USA	lapsed disc (con-	cal patients			ex-smokers	CT-scan	than among	No
	firmed through	from same		Controls:	or current	MR-scan	controls. No	
	symptoms/signs,	hospital (not		205? (exact	smokers	Disc	gender	
	imaging and	neck surge-		number not		herniation	modification.	
	surgery)	ry)		stated)				
Gore	Asymptomatic	Asymptoma-	Cross-	100	Number of	X-ray	Smoking is not	9/10
2006	smokers	tic non-	sectional	smokers	cigarettes	Curvature	associated with	
USA		smokers		? %	per day	deviance	degenerative	Yes
						Reduced	changes. Positive	
				100	Duration of	disc height	age association.	
				controls	smoking	Sclerosis of	No gender diffe-	
				? %		the	rences.	
						vertebral		
						endplates		
						Osteophytes		

			Other rating		
			scale		